You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike.
The main theme of this book is the exploration the underlying physical laws that permit the fabrication of nanometer-scale structures. As researchers attempt to fabricate nanometer-scale structures which do not exist per se, they must still employ the natural laws to fabricate them through processes such as self-assembly. This book will find service both as a reference work for researchers and as a comprehensive didactical text for graduate students.
The book encompasses the nanoscale semiconductor field by amalgamating a broad multidisciplinary arena including applications for energy conservation, materials performance enhancement, electronic circuitry, video displays, lighting, photovoltaics, quantum computing, memory, chemo- and biosensors, pharmaceuticals and medical diagnostics inter alia.
This book provides an overview of the preparation, characterization and application of metal-free functionalized carbons, including carbon nanotubes, graphene, carbon nitride and covalent organic framework (COF).
Polymer composites are materials in which the matrix polymer isreinforced with organic/inorganic fillers of a definite size andshape, leading to enhanced performance of the resultant composite.These materials find a wide number of applications in such diversefields as geotextiles, building, electronics, medical, packaging,and automobiles. This first systematic reference on the topic emphasizes thecharacteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia,government, industry, as well as private research institutionsacross the globe, and adopt a practical approach here, coveringsuch aspects as the preparation, characterization, properti...
Nanocarbon polymer biocomposites have gained increased attention from both researchers and manufacturers due to the significant improvement in their physico-mechanical, thermal and barrier properties when compared to conventional materials. Their dimensions, biodegradable character, cost-effectiveness, and sustainability are among the main drivers for increasing demand. However, it is difficult to achieve uniform dispersion between the carbon filler and matrix as it easily forms agglomerations. Production of nanocarbon polymer biocomposites with high mechanical and thermal properties is also limited, but there has been rapid progress in processing possibilities to produce nanocomposites base...
Environmental Toxicity of Nanomaterials focuses on causes and prevention of environmental toxicity induced by various nanomaterials. In sixteen chapters it describes the basic principles, trends, challenges, and future directions of nanoecotoxicity. The future acceptance of nanomaterials in various industries depends on the impacts of nanomaterials on the environment and ecosystem. This book analyzes the safe utilization of nanotechnology so the tremendous prospect of nanotechnology can be achieved without harming either living beings or the environment. Environmental Toxicity of Nanomaterials introduces nanoecotoxicity, describes various factors affecting the toxicity of nanomaterials, disc...
Black phosphorus (BP)-based two-dimensional (2D) nanomaterials are used as components in practical industrial applications in biomedicine, electronics, and photonics. There is a need to controllably shape engineered scalable structures of 2D BP building blocks, and their assembly/organization is desired for the formation of three-dimensional (3D) forms such as macro and hybrid architectures, as it is expected that these architectures will deliver even better materials performance in applications. Semiconducting Black Phosphorus: From 2D Nanomaterial to Emerging 3D Architecture provides an overview of the various synthetic strategies for 2D BP single-layer nanomaterials, their scalable synthe...