You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Progress in Optics Volume 43.
With contributions by numerous experts
Spectral Transform and Solitons
These two volumes of 47 papers focus on the increased interplay of theoretical advances in nonlinear hyperbolic systems, completely integrable systems, and evolutionary systems of nonlinear partial differential equations. The papers both survey recent results and indicate future research trends in these vital and rapidly developing branches of PDEs. The editor has grouped the papers loosely into the following five sections: integrable systems, hyperbolic systems, variational problems, evolutionary systems, and dispersive systems. However, the variety of the subjects discussed as well as their many interwoven trends demonstrate that it is through interactive advances that such rapid progress has occurred. These papers require a good background in partial differential equations. Many of the contributors are mathematical physicists, and the papers are addressed to mathematical physicists (particularly in perturbed integrable systems), as well as to PDE specialists and applied mathematicians in general.
In accordance with the established tradition of these annual meetings under the aegis of Orbis Scientiae we have, this year, included the very important field of "The Significance of Non linearity in the Natural Sciences." We are pleased to join many scientists in recognizing the nonlinearity arising from the under lying interaction of all natural phenomena. It is tempting to say that in the long run things are nonlinear and that we shall have to design new techniques and methods to solve nonlinear equations. This year's Orbis Scientiae did include four sessions on nonlinear equations pertaining to elementary particle physics, molecular physics, fluid dynamics, and also to biology. Our Cente...
The soliton is a dramatic concept in nonlinear science. What makes this book unique in the treatment of this subject is its focus on the properties that make the soliton physically ubiquitous and the soliton equation mathematically miraculous. Here, on the classical level, is the entity field theorists have been postulating for years: a local traveling wave pulse; a lump-like coherent structure; the solution of a field equation with remarkable stability and particle-like properties. It is a fundamental mode of propagation in gravity- driven surface and internal waves; in atmospheric waves; in ion acoustic and Langmuir waves in plasmas; in some laser waves in nonlinear media; and in many biologic contexts, such as alpha-helix proteins.
This volume is concerned with the theoretical description of patterns and instabilities and their relevance to physics, chemistry, and biology. More specifically, the theme of the work is the theory of nonlinear physical systems with emphasis on the mechanisms leading to the appearance of regular patterns of ordered behavior and chaotic patterns of stochastic behavior. The aim is to present basic concepts and current problems from a variety of points of view. In spite of the emphasis on concepts, some effort has been made to bring together experimental observations and theoretical mechanisms to provide a basic understanding of the aspects of the behavior of nonlinear systems which have a mea...
This volume is a collection of papers presented at a special session on integrable systems and Riemann-Hilbert problems. The goal of the meeting was to foster new research by bringing together experts from different areas. Their contributions to the volume provide a useful portrait of the breadth and depth of integrable systems. Topics covered include discrete Painleve equations, integrable nonlinear partial differential equations, random matrix theory, Bose-Einstein condensation, spectral and inverse spectral theory, and last passage percolation models. In most of these articles, the Riemann-Hilbert problem approach plays a central role, which is powerful both analytically and algebraically. The book is intended for graduate students and researchers interested in integrable systems and its applications.
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations a...
Mathematics has been behind many of humanity's most significant advances in fields as varied as genome sequencing, medical science, space exploration, and computer technology. But those breakthroughs were yesterday. Where will mathematicians lead us tomorrow and can we help shape that destiny? This book assembles carefully selected articles highlighting and explaining cutting-edge research and scholarship in mathematics. Contents: Preface; Solvability of Quasilinear Elliptic Second Order Differential Equations in Rn without Condition at Infinity; Recent Topics on a Class of Nonlinear Integrodifferential Equations of Physical Significance'; Nonparametric Estimation with Censored Observations; Normalisers of Groups Commensurable with PSL2(Z); Spectral Analysis of a Class of Multigroup Neutron Transport Operators in Slab Geometry; Extremum of a Nonlocal Functional Depending on Higher Order Derivatives of the Unknown Function; On Quantum Conditional Probability Spaces; Index.