You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Radiotracer Studies of Interfaces presents a selection of examples illustrating the application of radiotracer studies for different types of interfaces. The value of radiotracer studies in fields such as food chemistry, corrosion of metals, neurochemistry, biology and catalysis is revealed. Separate chapters are devoted to the environmental problems connected with nuclear reactors and with the nuclear industry in general. The book also presents efforts to minimize and avoid the risk of radioactive contamination in the environment by describing new approaches to the problem. Demonstrates the use of radiotracers Contains a detailed discussion of double-layer phenomena Separate chapters are devoted to the most important branches of science where radiotracer study of interfacial phenomena plays an important role
This book describes the central aspects of diffusion in solids, and goes on to provide easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Coverage includes diffusion-controlled phenomena including ionic conduction, grain-boundary and dislocation pipe diffusion. This book will benefit graduate students in such disciplines as solid-state physics, physical metallurgy, materials science, and geophysics, as well as scientists in academic and industrial research laboratories.
This fifth edition of the highly regarded family of titles that first published in 1965 is now a three-volume set and over 3,000 pages. All chapters have been revised and expanded, either by the fourth edition authors alone or jointly with new co-authors. Chapters have been added on the physical metallurgy of light alloys, the physical metallurgy of titanium alloys, atom probe field ion microscopy, computational metallurgy, and orientational imaging microscopy. The books incorporate the latest experimental research results and theoretical insights. Several thousand citations to the research and review literature are included. - Exhaustively synthesizes the pertinent, contemporary developments within physical metallurgy so scientists have authoritative information at their fingertips - Replaces existing articles and monographs with a single, complete solution - Enables metallurgists to predict changes and create novel alloys and processes
Selected, peer reviewed papers from the Symposium TMS 136th Annual Meeting and Exhibition (Orlando, FL, February 25 – March 1, 2007)
Nanostructured materials have at least one dimension in the nanometer range. They became a very active research area in solid state physics and chemistry in recent years with anticipated applications in various domains, including solar cells, electronics, batteries and sensors. Nanocrystalline metals and oxides are dense polycrystalline solids with a mean grain size below 100 nm. This book is intended to give an overview on selected properties and applications of nanocrystalline metals and oxides by leading experts in the field. The first three chapters provide a very complete theoretical treatment of thermodynamics and atom/ion transport for nanocrystalline materials. The following chapters are experts' views on the development of experimental characterization techniques for nanocrystalline solids with emphasis on electroceramic materials. Nanocrystalline Metals and Oxides is intended for a broad range of readers, foremost chemists, physicists and materials scientists. Theoretical physicists and chemists will certainly also profit from this book. The electroceramics and solid state ionics community are particularly addressed, given the main interests of the editors.
Selected, peer reviewed papers from the 8th Hungarian Conference on Materials Science, October 9-11, 2011, Balatonkenese, Hungary
Nine articles written especially for the series synthesize international research in condensed matter. Among the topics are fiber debonding and bridging toughening in fiber-reinforced brittle matrix composites, analyzing the electron transport phenomena in high- temperature superconductivity materials by studying the band spectrum and its transformation under doping by different impurities, a functional integral approach in superconductivity theory, dye molecules in zeolite L nano crystals for efficient light harvesting, luminescent properties of some substituted 1,8 naphthyridines, and the discrete dependence of powder steels properties on porosity. No information is provided about future volumes. c. Book News Inc.