You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book highlights the latest advances in stochastic processes, probability theory, mathematical statistics, engineering mathematics and algebraic structures, focusing on mathematical models, structures, concepts, problems and computational methods and algorithms important in modern technology, engineering and natural sciences applications. It comprises selected, high-quality, refereed contributions from various large research communities in modern stochastic processes, algebraic structures and their interplay and applications. The chapters cover both theory and applications, illustrated by numerous figures, schemes, algorithms, tables and research results to help readers understand the ma...
This volume is the first to present a state-of-the-art overview of this field, with many results published for the first time. It covers the general conditions as well as the basic applications of the theory, and it covers and demystifies the vast and technically demanding Russian literature in detail. Its coverage is thorough, streamlined and arranged according to difficulty.
The book is devoted to studies of quasi-stationary phenomena in nonlinearly perturbed stochastic systems. New methods of asymptotic analysis for nonlinearly perturbed stochastic processes based on new types of asymptotic expansions for perturbed renewal equation and recurrence algorithms for construction of asymptotic expansions for Markov type processes with absorption are presented. Asymptotic expansions are given in mixed ergodic (for processes) and large deviation theorems (for absorption times) for nonlinearly perturbed regenerative processes, semi-Markov processes, and Markov chains. Applications to analysis of quasi-stationary phenomena in nonlinearly perturbed queueing systems, population dynamics and epidemic models, and for risk processes are presented. The book also contains an extended bibliography of works in the area. It is an essential reference for theoretical and applied researchers in the field of stochastic processes and their applications and may be also useful for doctoral and advanced undergraduate students.
The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.
This book presents thirty-one extensive and carefully edited chapters providing an up-to-date survey of new models and methods for reliability analysis and applications in science, engineering, and technology. The chapters contain broad coverage of the latest developments and innovative techniques in a wide range of theoretical and numerical issues in the field of statistical and probabilistic methods in reliability.
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regula...
This book presents a selection of papers presented to the Second Inter national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984 : to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applicati...
A world list of books in the English language.
The book gives a systematical presentation of stochastic approximation methods for discrete time Markov price processes. Advanced methods combining backward recurrence algorithms for computing of option rewards and general results on convergence of stochastic space skeleton and tree approximations for option rewards are applied to a variety of models of multivariate modulated Markov price processes. The principal novelty of presented results is based on consideration of multivariate modulated Markov price processes and general pay-off functions, which can depend not only on price but also an additional stochastic modulating index component, and use of minimal conditions of smoothness for transition probabilities and pay-off functions, compactness conditions for log-price processes and rate of growth conditions for pay-off functions. The volume presents results on structural studies of optimal stopping domains, Monte Carlo based approximation reward algorithms, and convergence of American-type options for autoregressive and continuous time models, as well as results of the corresponding experimental studies.