You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advanced undergraduate/beginning graduate text on space and laboratory plasma physics.
Introducing the principles and applications of plasma physics, this new edition is ideal as an advanced undergraduate or graduate-level text.
Physics of the Inner Heliosphere gives for the first time a comprehensive and complete summary of our knowledge of the inner solar system. Using data collected over more than 11 years by the HELIOS twin solar probes, one of the most successful ventures in unmanned space exploration, the authors have compiled six extensive reviews of the physical processes of the inner heliosphere and their relation to the solar atmosphere. Researchers and advanced students in space and plasma physics, astronomy, and solar physics will be surprised to see just how closely the heliosphere is tied to, and how sensitively it depends on, the sun. Volume 2 deals with particles, waves, and turbulence, with chapters on: - magnetic clouds - interplanetary clouds - the solar wind plasma and MHD turbulence - waves and instabilities - energetic particles in the inner solar system
I have been asked by Professor Kikuchi to write a foreword for this interesting book on Dusty Plasmas and other electrical phenomena. This was a somewhat daunting task due to the wide range of topics covered. In what follows I have attempted to summarize most of these topics; for this purpose I have divided them into four groups, namely (a) Dusty Plasmas, (b) The Electrical Environment, (c) Lightning and (d) The Noise Environment. I hope that I have succeeded. in indicating that each section contains much that is of great interest. It is perhaps unnecessary for me to point out that the book contains subjects which are at an exciting and important stage in their development. (a) Dusty Plasmas...
This book is a comprehensive discussion of all issues related to atmospheric electricity in our solar system. It details atmospheric electricity on Earth and other planets and discusses the development of instruments used for observation.
Proceedings of the Summer Advanced Study Institute held at Graz, Austria, August 4-15, 1975
This rigorous explanation of plasmas is relevant to diverse plasma applications such as controlled fusion, astrophysical plasmas, solar physics, magnetospheric plasmas, and plasma thrusters. More thorough than previous texts, it exploits new powerful mathematical techniques to develop deeper insights into plasma behavior. After developing the basic plasma equations from first principles, the book explores single particle motion with particular attention to adiabatic invariance. The author then examines types of plasma waves and the issue of Landau damping. Magnetohydrodynamic equilibrium and stability are tackled with emphasis on the topological concepts of magnetic helicity and self-organization. Advanced topics follow, including magnetic reconnection, nonlinear waves, and the Fokker–Planck treatment of collisions. The book concludes by discussing unconventional plasmas such as non-neutral and dusty plasmas. Written for beginning graduate students and advanced undergraduates, this text emphasizes the fundamental principles that apply across many different contexts.