You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Consists of three relatively independent parts--theory, results, and applications. The first part is directed toward advanced math students who wish to get familiar with the foundations of the theory. The second part surveys the existing results on continuous selections of multivalued mappings. It is intended for specialists in the area and for those who have mastered the first part. The third part collects examples of applications of continuous selections that have played a key role in the corresponding areas of mathematics. It is written for researchers in general and geometric topology, functional and convex analysis, approximation theory and fixed-point theory, differential inclusions, and mathematical economics. Annotation copyrighted by Book News, Inc., Portland, OR
This volume presents some of the longstanding research problems of Geometry and Topology. It includes new aspects of mathematical research problems that will be of greatest value to all scientists working within these areas.
The authors consider the inverse problem of determining a rigid inclusion inside an isotropic elastic body $\Omega$, from a single measurement of traction and displacement taken on the boundary of $\Omega$. For this severely ill-posed problem they prove uniqueness and a conditional stability estimate of log-log type.
Difference Equations: Theory, Applications and Advanced Topics, Third Edition provides a broad introduction to the mathematics of difference equations and some of their applications. Many worked examples illustrate how to calculate both exact and approximate solutions to special classes of difference equations. Along with adding several advanced to
None
Alfred Gray's work covered a great part of differential geometry. In September 2000, a remarkable International Congress on Differential Geometry was held in his memory in Bilbao, Spain. Mathematicians from all over the world, representing 24 countries, attended the event. This volume includes major contributions by well known mathematicians (T. Banchoff, S. Donaldson, H. Ferguson, M. Gromov, N. Hitchin, A. Huckleberry, O. Kowalski, V. Miquel, E. Musso, A. Ros, S. Salamon, L. Vanhecke, P. Wellin and J.A. Wolf), the interesting discussion from the round table moderated by J.-P. Bourguignon, and a carefully selected and refereed selection of the Short Communications presented at the Congress. This book represents the state of the art in modern differential geometry, with some general expositions of some of the more active areas: special Riemannian manifolds, Lie groups and homogeneous spaces, complex structures, symplectic manifolds, geometry of geodesic spheres and tubes and related problems, geometry of surfaces, and computer graphics in differential geometry.