You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.
This book provides a detailed exposition of William Thurston's work on surface homeomorphisms, available here for the first time in English. Based on material of Thurston presented at a seminar in Orsay from 1976 to 1977, it covers topics such as the space of measured foliations on a surface, the Thurston compactification of Teichmüller space, the Nielsen-Thurston classification of surface homeomorphisms, and dynamical properties of pseudo-Anosov diffeomorphisms. Thurston never published the complete proofs, so this text is the only resource for many aspects of the theory. Thurston was awarded the prestigious Fields Medal in 1982 as well as many other prizes and honors, and is widely regarded to be one of the major mathematical figures of our time. Today, his important and influential work on surface homeomorphisms is enjoying continued interest in areas ranging from the Poincaré conjecture to topological dynamics and low-dimensional topology. Conveying the extraordinary richness of Thurston's mathematical insight, this elegant and faithful translation from the original French will be an invaluable resource for the next generation of researchers and students.
A set V in a domain U in Cn has the norm-preserving extension property if every bounded holomorphic function on V has a holomorphic extension to U with the same supremum norm. We prove that an algebraic subset of the symmetrized bidisc
This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the jump size of the approximation can be bounded uniformly in space, which often guarantees that the schemes are numerically stable for both finite and long time simulation of SDEs.
This volume offers an introduction, in the form of four extensive lectures, to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. The first lecture is by Christine Lescop on knot invariants and configuration spaces, in which a universal finite-type invariant for knots is constructed as a series of integrals over configuration spaces. This is followed by the contribution of Raimar Wulkenhaar on Euclidean quantum field theory from a statistical point of view. The author also discusses possible renormalization techniques on noncommutative spaces. The third lecture is by Anamaria Font and Stefan Theisen on string compactificati...
This monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. Many dynamical properties of the map are encoded in the geometry of this visual sphere. For example, an expanding Thurston map is topologically conjugate to a rational map if and only if its visual sphere is quasisymmetrically equivalent to the Riemann sphere. This relation between dynamics and fractal geometry is the main focus for the investigations in this work. The book is an introduction to the subject. The prerequisites for the reader are modest and include some basic knowledge of complex analysis and topology. The book has an extensive appendix, where background material is reviewed such as orbifolds and branched covering maps.
This study of hyperbolic geometry has both pedagogy and research in mind, and includes exercises and further reading for each chapter.
This unique volume, resulting from a conference at the Chern Institute of Mathematics dedicated to the memory of Xiao-Song Lin, presents a broad connection between topology and physics as exemplified by the relationship between low-dimensional topology and quantum field theory.The volume includes works on picture (2+1)-TQFTs and their applications to quantum computing, Berry phase and Yang-Baxterization of the braid relation, finite type invariant of knots, categorification and Khovanov homology, Gromov-Witten type invariants, twisted Alexander polynomials, Faddeev knots, generalized Ricci flow, Calabi-Yau problems for CR manifolds, Milnor's conjecture on volume of simplexes, Heegaard genera of 3-manifolds, and the (A,B)-slice problem. It also includes five unpublished papers of Xiao-Song Lin and various speeches related to the memorial conference.
Every eight years since 1961, the University of Georgia has hosted a major international topology conference aimed at disseminating important recent results and bringing together researchers at different stages of their careers. This volume contains the proceedings of the 2009 conference, which includes survey and research articles concerning such areas as knot theory, contact and symplectic topology, 3-manifold theory, geometric group theory, and equivariant topology. Among other highlights of the volume, a survey article by Stefan Friedl and Stefano Vidussi provides an accessible treatment of their important proof of Taubes' conjecture on symplectic structures on the product of a 3-manifold and a circle, and an intriguing short article by Dennis Sullivan opens the door to the use of modern algebraic-topological techniques in the study of finite-dimensional models of famously difficult problems in fluid dynamics. Continuing what has become a tradition, this volume contains a report on a problem session held at the conference, discussing a variety of open problems in geometric topology.