You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the outcome of the 1996 Warwick Algebraic Geometry EuroConference, containing 17 survey and research articles selected from the most outstanding contemporary research topics in algebraic geometry. Several of the articles are expository: among these a beautiful short exposition by Paranjape of the new and very simple approach to the resolution of singularities; a detailed essay by Ito and Nakamura on the ubiquitous A,D,E classification, centred around simple surface singularities; a discussion by Morrison of the new special Lagrangian approach to giving geometric foundations to mirror symmetry; and two deep, informative surveys by Siebert and Behrend on Gromow-Witten invariants treating them from the point of view of algebraic and symplectic geometry. The remaining articles cover a wide cross-section of the most significant research topics in algebraic geometry. This includes Gromow-Witten invariants, Hodge theory, Calabi-Yau 3-folds, mirror symmetry and classification of varieties.
The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.
This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.
Gathers the 14 papers presented during a March 2000 symposium on algebraic geometry. The contributors survey the links between geometry and the theory of Korteweg de Vries (KdV) equations, as well as new developments in orbifold string theory. Other papers investigate orthogonal complex hyperbolic arrangements, vector bundles on the cubic threefold, using symmetry to count rational curves, the Nash conjecture for non-projective threefolds, and the punctual Hilbert scheme of a symplectic fourfold. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Providing a timely description of the present state of the art of moduli spaces of curves and their geometry, this volume is written in a way which will make it extremely useful both for young people who want to approach this important field, and also for established researchers, who will find references, problems, original expositions, new viewpoints, etc. The book collects the lecture notes of a number of leading algebraic geometers and in particular specialists in the field of moduli spaces of curves and their geometry. This is an important subject in algebraic geometry and complex analysis which has seen spectacular developments in recent decades, with important applications to other parts of mathematics such as birational geometry and enumerative geometry, and to other sciences, including physics. The themes treated are classical but with a constant look to modern developments (see Cascini, Debarre, Farkas, and Sernesi's contributions), and include very new material, such as Bridgeland stability (see Macri's lecture notes) and tropical geometry (see Chan's lecture notes).
Contains contributions by over 25 leading international mathematicians in the areas of commutative algebra and algebraic geometry. The text presents developments and results based on, and inspired by, the work of Mario Fiorentini. It covers topics ranging from almost numerical invariants of algebraic curves to deformation of projective schemes.
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.
The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an active biweekly research seminar. The tradition continues up to today. The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates from the seminar held in 1995--96. Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles.
Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
The word ``moduli'' in the sense of this book first appeared in the epoch-making paper of B. Riemann, Theorie der Abel'schen Funktionen, published in 1857. Riemann defined a Riemann surface of an algebraic function field as a branched covering of a one-dimensional complex projective space, and found out that Riemann surfaces have parameters. This work gave birth to the theory of moduli. However, the viewpoint regarding a Riemann surface as an algebraic curve became the mainstream,and the moduli meant the parameters for the figures (graphs) defined by equations. In 1913, H. Weyl defined a Riemann surface as a complex manifold of dimension one. Moreover, Teichmuller's theory of quasiconformal ...