Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Echolocation in Bats and Dolphins
  • Language: en
  • Pages: 636

Echolocation in Bats and Dolphins

Although bats and dolphins live in very different environments, are vastly different in size, and hunt different kinds of prey, both groups have evolved similar sonar systems, known as echolocation, to locate food and navigate the skies and seas. While much research has been conducted over the past thirty years on echolocation in bats and dolphins, this volume is the first to compare what is known about echolocation in each group, to point out what information is missing, and to identify future areas of research. Echolocation in Bats and Dolphins consists of six sections: mechanisms of echolocation signal production; the anatomy and physiology of signal reception and interpretation; performance and cognition; ecological and evolutionary aspects of echolocation mammals; theoretical and methodological topics; and possible echolocation capabilities in other mammals, including shrews, seals, and baleen whales. Animal behaviorists, ecologists, physiologists, and both scientists and engineers who work in the field of bioacoustics will benefit from this book.

How nature shaped echolocation in animals
  • Language: en
  • Pages: 208

How nature shaped echolocation in animals

Echolocation has evolved in different groups of animals, from bats and cetaceans to birds and humans, and enables localization and tracking of objects in a dynamic environment, where light levels may be very low or absent. Nature has shaped echolocation, an active sense that engages audiomotor feedback systems, which operates in diverse environments and situations. Echolocation production and perception vary across species, and signals are often adapted to the environment and task. In the last several decades, researchers have been studying the echolocation behavior of animals, both in the air and underwater, using different methodologies and perspectives. The result of these studies has led...

Echolocation in Bats and Dolphins
  • Language: en
  • Pages: 640

Echolocation in Bats and Dolphins

Although bats and dolphins live in very different environments, are vastly different in size, and hunt different kinds of prey, both groups have evolved similar sonar systems, known as echolocation, to locate food and navigate the skies and seas. While much research has been conducted over the past thirty years on echolocation in bats and dolphins, this volume is the first to compare what is known about echolocation in each group, to point out what information is missing, and to identify future areas of research. Echolocation in Bats and Dolphins consists of six sections: mechanisms of echolocation signal production; the anatomy and physiology of signal reception and interpretation; performance and cognition; ecological and evolutionary aspects of echolocation mammals; theoretical and methodological topics; and possible echolocation capabilities in other mammals, including shrews, seals, and baleen whales. Animal behaviorists, ecologists, physiologists, and both scientists and engineers who work in the field of bioacoustics will benefit from this book.

The Neural Basis of Echolocation in Bats
  • Language: en
  • Pages: 143

The Neural Basis of Echolocation in Bats

  • Type: Book
  • -
  • Published: 2011-12-28
  • -
  • Publisher: Springer

The brain of an echo locating bat is devoted, in large part, to analyzing sound and conducting behavior in a world of sounds and echoes. This monograph is about analysis of sound in the brainstem of echolocating bats and concerns the relationship between brain structure and brain function. Echolocating bats are unique subjects for the study of such relationships. Like man, echolocating bats emit sounds just for the purpose of listening to them. Simply by observing the bat's echolocation sounds, we know what the bat listens to in nature. We therefore have a good idea what the bat's auditory brain is designed to do. But this alone does not make the bat unique. The brain of the bat is, by mammalian standards, rather primitive. The unique aspect is the combination of primitive characteristics and complex auditory processing. Within this small brain the auditory structures are hypertrophied and have an elegance of organization not seen in other mammals. It is as if the auditory pathways had evolved while the rest of the brain remained evolutionary quiescent.

Biosonar
  • Language: en
  • Pages: 312

Biosonar

  • Type: Book
  • -
  • Published: 2014-07-19
  • -
  • Publisher: Springer

Two groups of animals, bats and odontocetes (toothed whales), have independently developed the ability to orient and detect prey by biosonar (echolocation). This active mechanism of orientation allows these animals to operate under low light conditions. Biosonar is a conceptual overview of what is known about biosonar in bats and odontocetes. Chapters are written by bat and odontocetes experts, resulting in collaborations that not only examine data on both animals, but also compare and contrast mechanisms. This book provides a unique insight that will help improve our understanding of biosonar in both animal groups.

Echolocation in Whales and Dolphins
  • Language: en
  • Pages: 284

Echolocation in Whales and Dolphins

  • Type: Book
  • -
  • Published: 1983
  • -
  • Publisher: Unknown

None

Bat Bioacoustics
  • Language: en
  • Pages: 318

Bat Bioacoustics

  • Type: Book
  • -
  • Published: 2016-06-02
  • -
  • Publisher: Springer

Arguably biosonar is one of the ‘eye-opening’ discoveries about animal behavior and the auditory systems of echolocators are front and center in this story. Echolocation by bats has proven to be a virtual gold mine for colleagues studying neurobiology, while providing many rich examples of its impact on other areas of bats’ lives. In this volume we briefly review the history of the topic (reminding readers of the 1995 Hearing by Bats). We use a chapter on new findings in the phylogeny of bats to put the information that follows in an evolutionary context. This includes an examination of the possible roles of Prestin and FoxP2 genes and various anatomical features affecting bat vocalizations. We introduce recent work on the role of noseleafs, ears, and other facial components on the focusing of sound and collection of echoes. ​

Hearing by Bats
  • Language: en
  • Pages: 527

Hearing by Bats

The Springer Handbook oj Auditory Research presents a series of com prehensive and synthetic reviews of the fundamental topics in modern auditory research. It is aimed at all individuals with interests in hearing research including advanced graduate students, postdoctoral researchers, and clinical investigators. The volumes will introduce new investigators to important aspects of hearing science and will help established investigators to better understand the fundamental theories and data in fields of hearing that they may not normally follow closely. Each volume is intended to present a particular topic comprehensively, and each chapter will serve as a synthetic overview and guide to the li...

Animal Sonar
  • Language: en
  • Pages: 822

Animal Sonar

The first meeting on biosonar that I had the opportunity to attend was held in 1978 on the Island of Jersey in the English Channel. That meeting, organized by Professor R.G. Busne1 and Dr. Jim Fish, was my introduction to an exciting and varied group of hard-working and dedicated scientists studying animal echolocation. They are, by nature, a very diverse group. They tend to publish in different journals and rarely interact despite the fact that they all work on echolocation. When they do interact as a group, as they did in Frascati Italy in 1966, in Jersey i~ 1978, and during the meeting reported in this volume, the meetings are intense, interesting, and exciting. This volume is a compositi...

The Neural Basis of Echolocation in Bats
  • Language: en
  • Pages: 148

The Neural Basis of Echolocation in Bats

The brain of an echo locating bat is devoted, in large part, to analyzing sound and conducting behavior in a world of sounds and echoes. This monograph is about analysis of sound in the brainstem of echolocating bats and concerns the relationship between brain structure and brain function. Echolocating bats are unique subjects for the study of such relationships. Like man, echolocating bats emit sounds just for the purpose of listening to them. Simply by observing the bat's echolocation sounds, we know what the bat listens to in nature. We therefore have a good idea what the bat's auditory brain is designed to do. But this alone does not make the bat unique. The brain of the bat is, by mammalian standards, rather primitive. The unique aspect is the combination of primitive characteristics and complex auditory processing. Within this small brain the auditory structures are hypertrophied and have an elegance of organization not seen in other mammals. It is as if the auditory pathways had evolved while the rest of the brain remained evolutionary quiescent.