You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
This volume contains a collection of papers dedicated to Professor Eckhard Platen to celebrate his 60th birthday, which occurred in 2009. The contributions have been written by a number of his colleagues and co-authors. All papers have been - viewed and presented as keynote talks at the international conference “Quantitative Methods in Finance” (QMF) in Sydney in December 2009. The QMF Conference Series was initiated by Eckhard Platen in 1993 when he was at the Australian - tional University (ANU) in Canberra. Since joining UTS in 1997 the conference came to be organised on a much larger scale and has grown to become a signi?cant international event in quantitative ?nance. Professor Plat...
A framework for financial market modeling, the benchmark approach extends beyond standard risk neutral pricing theory. It permits a unified treatment of portfolio optimization, derivative pricing, integrated risk management and insurance risk modeling. This book presents the necessary mathematical tools, followed by a thorough introduction to financial modeling under the benchmark approach, explaining various quantitative methods for the fair pricing and hedging of derivatives.
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Ca...
This volume contains a collection of papers dedicated to Professor Eckhard Platen to celebrate his 60th birthday, which occurred in 2009. The contributions have been written by a number of his colleagues and co-authors. All papers have been - viewed and presented as keynote talks at the international conference “Quantitative Methods in Finance” (QMF) in Sydney in December 2009. The QMF Conference Series was initiated by Eckhard Platen in 1993 when he was at the Australian - tional University (ANU) in Canberra. Since joining UTS in 1997 the conference came to be organised on a much larger scale and has grown to become a signi?cant international event in quantitative ?nance. Professor Plat...
This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
This research monograph provides an introduction to tractable multidimensional diffusion models, where transition densities, Laplace transforms, Fourier transforms, fundamental solutions or functionals can be obtained in explicit form. The book also provides an introduction to the use of Lie symmetry group methods for diffusions, which allows to compute a wide range of functionals. Besides the well-known methodology on affine diffusions it presents a novel approach to affine processes with applications in finance. Numerical methods, including Monte Carlo and quadrature methods, are discussed together with supporting material on stochastic processes. Applications in finance, for instance, on credit risk and credit valuation adjustment are included in the book. The functionals of multidimensional diffusions analyzed in this book are significant for many areas of application beyond finance. The book is aimed at a wide readership, and develops an intuitive and rigorous understanding of the mathematics underlying the derivation of explicit formulas for functionals of multidimensional diffusions.
The contributors to this volume write a series of articles outlining contemporary advances in a number of key areas of mathematical finance such as, optimal control theory applied to finance, interest rate models, credit risk and credit derivatives, use of alternative stochastic processes, numerical solution of equations of mathematical finance, estimation of stochastic processes in finance. The list of authors includes many of the researchers who have made the major contributions to these various areas of mathematical finance. This volume addresses both researchers and professionals in financial institutions, as well as regulators working in the above mentioned fields.
Since the pioneering work of Black, Scholes, and Merton in the field of financial mathematics, research has led to the rapid development of a substantial body of knowledge, with plenty of applications to the common functioning of the world’s financial institutions. Mathematics, as the language of science, has always played a role in the development of knowledge and technology. Presently, the high-tech character of modern business has increased the need for advanced methods, which rely to a large extent on mathematical techniques. It has become essential for the financial analyst to possess a high degree of proficiency in these mathematical techniques.
The year 2000 is the centenary year of the publication of Bachelier's thesis which - together with Harry Markovitz Ph. D. dissertation on portfolio selection in 1952 and Fischer Black's and Myron Scholes' solution of an option pricing problem in 1973 - is considered as the starting point of modern finance as a mathematical discipline. On this remarkable anniversary the workshop on mathematical finance held at the University of Konstanz brought together practitioners, economists and mathematicians to discuss the state of the art. Apart from contributions to the known discrete, Brownian, and Lvy process models, first attempts to describe a market in a reasonable way by a fractional Brownian mo...