You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The dynamics of the earthquake rupture process are closely related to fault zone properties which the authors have intensively investigated by various observations in the field as well as by laboratory experiments. These include geological investigation of the active and fossil faults, physical and chemical features obtained by the laboratory experiments, as well as the seismological estimation from seismic waveforms. Earthquake dynamic rupture can now be modeled using numerical simulations on the basis of field and laboratory observations, which should be very useful for understanding earthquake rupture dynamics.Features:* First overview of new and improved techniques in the study of earthquake faulting* Broad coverage* Full colorBenefits:* A must-have for all geophysicists who work on earthquake dynamics* Single resource for all aspects of earthquake dynamics (from lab measurements to seismological observations to numerical modelling)* Bridges the disciplines of seismology, structural geology and rock mechanics* Helps readers to understand and interpret graphs and mapsAlso has potential use as a supplementary resource for upper division and graduate geophysics courses.
Advances in Earth Science outlines the latest developments and new research directions currently being made world-wide in the earth sciences. It contains invited and refereed articles by leading younger researchers on their cutting-edge research, but aimed at a general scientific audience. This exciting volume explains how powerful methodologies such as satellite remote sensing and supercomputing simulations are now profoundly changing research in the earth sciences; how the earth system is increasingly being viewed in a holistic way, linking the atmosphere, ocean and solid earth; and how the societal impact of the research in the earth sciences has never been more important. Published by Imperial College Press in collaboration with the Royal Society of London, the book features many articles originating from invited papers published in the Philosophical Transactions of the Royal Society. Eleven of the distinguished contributors hold prestigious Royal Society Research Fellowships.
This is the second of two volumes devoted to earthquakes and multi-hazards around the Pacific Rim. The circum-Pacific seismic belt is home to roughly 80% of the world’s largest earthquakes, making it the ideal location for investigating earthquakes and related hazards such as tsunamis and landslides. Following the Introduction, this volume includes 14 papers covering a range of topics related to multi-hazards. The book is divided into five sections: viscoelastic deformation, earthquake source models, earthquake prediction, seismic hazard assessment, and tsunami simulation. Viscoelastic relaxation can play an important role in subduction zone behavior, and this is explored in the first sect...
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and p...
Scientists examine tectonic faulting on all scales--from seismic fault slip to the formation of mountain ranges--and discuss its connection to a wide range of global phenomena, including long-term climate change and evolution. Tectonic faults are sites of localized motion, both at the Earth's surface and within its dynamic interior. Faulting is directly linked to a wide range of global phenomena, including long-term climate change and the evolution of hominids, the opening and closure of oceans, and the rise and fall of mountain ranges. In Tectonic Faults, scientists from a variety of disciplines explore the connections between faulting and the processes of the Earth's atmosphere, surface, a...
For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referr...
This is the first of two volumes devoted to earthquakes and multi-hazards around the Pacific Rim. The circum-Pacific seismic belt is home to roughly 80% of the world’s largest earthquakes, making it the ideal location for investigating earthquakes and related hazards such as tsunamis and landslides. Gathering 16 papers that cover a range of topics related to multi-hazards, the book is divided into three sections: earthquake physics, earthquake simulation and data assimilation, and multi-hazard assessment and earthquake forecasting models. The first section includes papers on laboratory-derived rheological parameters as well as seismic studies in the Gulf of California and China. In turn, t...
Paleoseismology has become an important component of seismic risk analysis, which is mandated for nuclear power plants, dams, waste repositories, and other critical structures. This book is the first in the English language to be devoted solely to paleoseismology. It summarizes the development of the field from the 1960s to the present, encompassing material that is currently widely dispersed in journal articles. - Includes a comprehensive review of the techniques currently used in paleoseismology - Emphasizes practical methods of data collection and field studies - Covers interpretation of field data based on current theory concerning fault segmentation and recurrence cycles - Contains more than 170 line drawings and 50 photographs of paleoseismic phenomena