You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can drive continued advancements, particularly in thermal management, usability, efficiency, reliability and overall cost of power semiconductor solutions.
The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry’s ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionar...
As the demand for packaging more electronic capabilities into smaller packages rises, product developers must be more cognizant of how the system configuration will impact its performance. Practical Guide to the Packaging of Electronics: Second Edition, Thermal and Mechanical Design and Analysis provides a basic understanding of the issues that concern the field of electronics packaging. First published in 2003, this book has been extensively updated, includes more detail where needed, and provides additional segments for clarification. This volume supplies a solid foundation for heat transfer, vibration, and life expectancy calculations. Topics discussed include various modes of heat remova...
Packaging materials strongly affect the effectiveness of an electronic packaging system regarding reliability, design, and cost. In electronic systems, packaging materials may serve as electrical conductors or insulators, create structure and form, provide thermal paths, and protect the circuits from environmental factors, such as moisture, contamination, hostile chemicals, and radiation. Electronic Packaging Materials and Their Properties examines the array of packaging architecture, outlining the classification of materials and their use for various tasks requiring performance over time. Applications discussed include: interconnections printed circuit boards substrates encapsulants dielectrics die attach materials electrical contacts thermal materials solders Electronic Packaging Materials and Their Properties also reviews key electrical, thermal, thermomechanical, mechanical, chemical, and miscellaneous properties as well as their significance in electronic packaging.
Whether you are designing a new system or troubleshooting a current one, this ingenious text offers a wealth of valuable information. The author focuses on reliability problems and the design of systems with incomplete criteria and components and provides a simple approach for estimating thermal and mechanical characteristics of electronic systems. Practical Guide to the Packaging of Electronics discusses Packaging/enclosure design and reliability Thermal, junction-to-case, and contact interface resistance Direct and indirect flow system design Fin design and fan selection Vital elements of shock and vibration Thermal stresses and strains in the design and analysis of mechanically reliable systems Reliability models and system failure The selection of engineering software to facilitate system analysis Design parameters in an avionics electronics package Practical Guide to the Packaging of Electronics is an excellent refresher for mechanical, biomedical, electrical and electronics, manufacturing, materials, and quality and reliability engineers, and will be an invaluable text for upper-level undergraduate and graduate students in these disciplines.
Here is the ultimate electronic packaging resource, in which luminaries from the four intertwined disciplines of packaging present a one-stop guide to the state of the art. An absolute necessity for anyone working in the field, this "how-to" reference covers all the newest technologies, including BGA, Flip Chip, and CSP.
The packaging of electronic devices and systems represents a significant challenge for product designers and managers. Performance, efficiency, cost considerations, dealing with the newer IC packaging technologies, and EMI/RFI issues all come into play. Thermal considerations at both the device and the systems level are also necessary. The Electronic Packaging Handbook, a new volume in the Electrical Engineering Handbook Series, provides essential factual information on the design, manufacturing, and testing of electronic devices and systems. Co-published with the IEEE, this is an ideal resource for engineers and technicians involved in any aspect of design, production, testing or packaging ...
Although materials play a critical role in electronic packaging, the vast majority of attention has been given to the systems aspect. Materials for Electronic Packaging targets materials engineers and scientists by focusing on the materials perspective. The last few decades have seen tremendous progress in semiconductor technology, creating a need for effective electronic packaging. Materials for Electronic Packaging examines the interconnections, encapsulations, substrates, heat sinks and other components involved in the packaging of integrated circuit chips. These packaging schemes are crucial to the overall reliability and performance of electronic systems. - Consists of 16 self-contained chapters, contributed by a variety of active researchers from industrial, academic and governmental sectors - Addresses the need of materials scientists/engineers, electrical engineers, mechanical engineers, physicists and chemists to acquire a thorough knowledge of materials science - Explains how the materials for electronic packaging determine the overall effectiveness of electronic systems