You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory.This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
This volume tells the tale of cosmology as seen by some of the finest cosmologists in the world. It starts with “Galaxy Formation from Start to Finish” and ends with “Understanding Dark Energy,” having a rich variety of themes in between. Designed for non-cosmological scientists, this up-to-date collection of review articles offers a general introduction to cosmology. If you are at all curious about where we came from and where we are going, this is the book for you.
This volume presents a set of pedagogical lectures that introduce particle physics beyond the standard model and particle cosmology to advanced graduate students.
Learn how a world-class inventor-scientist is currently tackling the greatest scientific mysteries of the universe -- and succeeding. With his new book, Drexler provides a viable baseline to jump-start debate on a standard model for postmodern cosmology. It is the first book to not only address these seven unsolved cosmic mysteries, shown in this book's subtitle, but also offer plausible explanations for each of them. The correlation of these seven cosmic phenomena by Drexler offers a revolutionary advance in cosmological research and potentially broad acceptance and use of the related concepts. This book was written for open-minded cosmologists, astronomers, astrophysicists, physicists, engineers, students, enthusiasts and those at NASA, NSF, DOE and ESO who want to understand postmodern cosmology. The author's five years of cosmology research, and his successes, convinced him that his postmodern cosmology model is correctly based upon the relationships and linkages of these seven cosmic phenomena.
What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of th...
Exploring common themes in modern art, mathematics, and science, including the concept of space, the notion of randomness, and the shape of the cosmos. This is a book about art—and a book about mathematics and physics. In Lumen Naturae (the title refers to a purely immanent, non-supernatural form of enlightenment), mathematical physicist Matilde Marcolli explores common themes in modern art and modern science—the concept of space, the notion of randomness, the shape of the cosmos, and other puzzles of the universe—while mapping convergences with the work of such artists as Paul Cezanne, Mark Rothko, Sol LeWitt, and Lee Krasner. Her account, focusing on questions she has investigated in...
This book is different from all other modern cosmology books in several ways. It introduces a cosmologic universe, which is orderly, logical, and systematic. It teaches and explains by illustrating how a variety of cosmic mysteries have been solved. It raises the status of dark matter in the universe by illuminating its roles as the principal source of energy, the principal source of matter in the form of hydrogen and helium, and the principal source of cosmic relationships with the principal cosmic phenomena of the universe. This book simplifies the universe as Nicolaus Copernicus' book simplified the solar system in 1543. With more and more cosmic mysteries being discovered and the slow progress in solving them, cosmologists and astrophysicists must re-train themselves to understand and to utilize the postmodern unified astrophysical cosmology model and to maximize the knowledge derived from the astronomical data. These are the three principal objectives of this book.
The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on...