You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Emil Artin was one of the great mathematicians of the twentieth century. He had the rare distinction of having solved two of the famous problems posed by David Hilbert in 1900. He showed that every positive definite rational function of several variables was a sum of squares. He also discovered and proved the Artin reciprocity law, the culmination of over a century and a half of progress in algebraic number theory. Artin had a great influence on the development of mathematics in his time, both by means of his many contributions to research and by the high level and excellence of his teaching and expository writing. In this volume we gather together in one place a selection of his writings wh...
This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.
"This brief monograph on the gamma function by a major 20th century mathematician was designed to bridge a gap in the literature of mathematics between incomplete and over-complicated treatments. Topics include functions, the Euler integrals and the Gauss formula, large values of X and the multiplication formula, the connection with sin X applications to definite integrals, and other subjects. "--
This book contains the full text of the letters from Emil Artin to Helmut Hasse, as they are preserved in the Handschriftenabteilung of the Göttingen University Library. There are 49 such letters, written in the years 1923-1934, discussing mathematical problems of the time. The corresponding letters in the other direction, i.e., from Hasse to Artin, seem to be lost. We have supplemented Artin's letters by detailed comments, combined with a description of the mathematical environment of Hasse and Artin, and of the relevant literature. In this way it has become possible to sufficiently reconstruct the content of the corresponding letters from Hasse to Artin too. Artin and Hasse were among tho...
None
This volume consists of the English translations of the letters exchanged between Emil Artin to Helmut Hasse written from 1921 until 1958. The letters are accompanied by extensive comments explaining the mathematical background and giving the information needed for understanding these letters. Most letters deal with class field theory and shed a light on the birth of one of its most profound results: Artin's reciprocity law.
'Algebra with Galois Theory' is based on lectures by Emil Artin. The book is an ideal textbook for instructors and a supplementary or primary textbook for students.
This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, "I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus." Generations of teachers and students have benefitted from Artin's masterly arguments and precise results. Suitable for advanced undergraduates and graduate students of mathematics, his treatment examines functions, the Euler integrals and the Gauss formula, large values of x and the multiplication formula, the connection with sin x, applications to definite integrals, and other subjects.
Originated from the notes of a course given at Princeton University in 1950-1951, this text offers an introduction to algebraic numbers and algebraic functions. It starts with the general theory of valuation fields, proceeds to the local class field theory, and then to the theory of function fields in one variable.