You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the result of various master and summer school courses the author has taught. The objective is to provide the reader with an introduction to control theory and to the main tools allowing to treat general control systems. The author hopes this book will serve as motivation to go deeper into the theory or numerical aspects that are not covered in this book. This book might be helpful for graduate students and researchers in the field of control theory.
This is the second of a series of IFAC Workshops initiated in 2000. The first one chaired and organized by Profs. N. Leonard and R. Ortega, was held in Princeton in March 2000. This proceedings volume looks at the role-played by Lagrangian and Hamiltonian methods in disciplines such as classical mechanics, quantum mechanics, fluid dynamics, electrodynamics, celestial mechanics and how such methods can be practically applied in the control community. *Presents and illustrates new approaches to nonlinear control that exploit the Lagrangian and Hamiltonian structure of the system to be controlled *Highlights the important role of Lagrangian and Hamiltonian Structures as design methods
The proceedings of a summer school held in 2015 whose theme was long time behavior and control of evolution equations.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
This volume originates from the Third Nonlinear Control Workshop "- namics, Bifurcations and Control", held in Kloster Irsee, April 1-3 2001. As the preceding workshops held in Paris (2000) and in Ghent (1999), it was organized within the framework of Nonlinear Control Network funded by the European Union (http://www.supelec.fr/lss/NCN). The papers in this volume center around those control problems where phenomena and methods from dynamical systems theory play a dominant role. Despite the large variety of techniques and methods present in the c- tributions, a rough subdivision can be given into three areas: Bifurcation problems, stabilization and robustness, and global dynamics of control s...
Strategy is the art of thinking about war before it occurs. Noting that space already plays a role in all of today’s wars, Space Strategy studies how conflicts are extending into this new domain. The book defines extra-atmospheric space and focuses on its varying features and constraints. By exploring the opportunities for action provided by different strategic positions, the book analyzes the most plausible combat scenarios from, against and within space. It explains the concepts of militarization, weaponization and martialization of space and shows how space systems constitute an essential component of information literacy – the key to power in the 21st Century. Space Strategy then demonstrates why our society, having become space-dependent, must take appropriate measures to develop its spatioresilience. Finally, the author summarizes his reflections in the form of a mnemonic listing twelve principles of space strategy. Completed by educational appendices and a glossary containing one thousand entries, Space Strategy meets the needs of students, researchers or any other reader curious about expanding their knowledge of strategy.
This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific community interested in active matter and its many applications will find this volume to be a timely, authoritative, and valuable resource.
This book gathers together a selection of papers presented at the Joint CTS-HYCON Workshop on Nonlinear and Hybrid Control held at the Paris Sorbonne, France, 10-12 July 2006. The main objective of the Workshop was to promote the exchange of ideas and experiences and reinforce scientific contacts in the large multidisciplinary area of the control of nonlinear and hybrid systems.
The first part of this volume gathers the lecture notes of the courses of the “XVII Escuela Hispano-Francesa”, held in Gijón, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.