You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the 1990s Kim and Pillay generalized stability, a major model theoretic idea developed by Shelah twenty-five years earlier, to the study of simple theories. This book is an up-to-date introduction to simple theories and hyperimaginaries, with special attention to Lascar strong types and elimination of hyperimaginary problems. Assuming only knowledge of general model theory, the foundations of forking, stability, and simplicity are presented in full detail. The treatment of the topics is as general as possible, working with stable formulas and types and assuming stability or simplicity of the theory only when necessary. The author offers an introduction to independence relations as well as a full account of canonical bases of types in stable and simple theories. In the last chapters the notions of internality and analyzability are discussed and used to provide a self-contained proof of elimination of hyperimaginaries in supersimple theories.
An up-to-date account of the current techniques and results in Simplicity Theory, which has been a focus of research in model theory for the last decade. Suitable for logicians, mathematicians and graduate students working on model theory.
Concise introduction to current topics in model theory, including simple and stable theories.
The first book to introduce the rapidly developing subject of NIP theories, for students and researchers in model theory.
This book has two chapters. The first is a modern or contemporary account of stability theory. A focus is on the local (formula-by-formula) theory, treated a little differently from in the author's book Geometric Stability Theory. There is also a survey of general and geometric stability theory, as well as applications to combinatorics (stable regularity lemma) using pseudofinite methods.The second is an introduction to 'continuous logic' or 'continuous model theory,' drawing on the main texts and papers, but with an independent point of view. This chapter includes some historical background, including some other formalisms for continuous logic and a discussion of hyperimaginaries in classical first order logic.These chapters are based around notes, written by students, from a couple of advanced graduate courses in the University of Notre Dame, in Autumn 2018, and Spring 2021.
Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.
This is the English translation of the book originally published in 1987. It is a faithful reproduction of the original, supplemented by a new Foreword and brought up to date by a short postscript. The book gives an introduction by a specialist in contemporary mathematical logic to the model-theoretic study of groups, i.e., into what can be said about groups, and for that matter, about all the traditional algebraic objects. The author introduces the groups of finite Morley rank (those satisfying the most restrictive assumptions from the point of view of logic), and highlights their resemblance to algebraic groups, of which they are the prototypes. (All the necessary prerequisites from algebraic geometry are included in the book.) Then, whenever possible, generalizations of properties of groups of finite Morley type to broader classes of superstables and stable groups are described. The exposition in the first four chapters can be understood by mathematicians who have some knowledge of logic (model theory). The last three chapters are intended for specialists in mathematical logic.
Amics de joventut, artistes, poetes i crítics d’art són convocats a perfilar, per carta, un entramat de relacions fascinants. La figura central és l’escultor Enric Casanovas (1882-1948) i el punt de sortida, el mític París de començament del segle XX. A través d’aquest enfilall de cartes i postals, assistim tant a descobertes personals (la de Ceret per Manolo Hugué, o la de Gósol per Pablo Picasso) com a passejades per les ciutats prototípicament noucentistes en què Casanovas va rebre encàrrecs públics (Girona, Sitges i Figueres). A través de més de tres-centes cartes, inèdites fins ara, tenim notícia de projectes engrescadors que quedaren estroncats per l’esclat de la guerra civil, i també del dramàtic exili a França, relatat a través de la mirada de Pablo Picasso, Apel·les Fenosa, Josep Pous i Pagès o Ferran Soldevila. A tall de colofó, recuperem unes notes de viatges i un assaig de memòria escrits pel mateix Casanovas, sens dubte un dels principals representants de l’escultura catalana contemporània.
Aquest llibre presenta una reflexió acadèmica i professional al Campus de la Diagonal amb un ampli ventall d’idees urbanístiques que permeten establir un nou escenari universitari i millorar la relació amb la ciutat..Durant els anys seixanta i setanta del segle passat es varen realitzar diversos projectes d’edificis i recintes universitaris de gran interès (de Carlo, Candilis, Sert). També es varen publicar notables estudis sobre la relació entre la ciutat i la universitat..Feia, però, força anys que aquestes qüestions no semblaven ocupar l’agenda d’arquitectes, urbanistes i responsables universitaris. Per això sembla tan oportú l’esforç de recollir en aquestes poc més de dues-centes planes tot un seguit de riques reflexions i de projectes, tant aquells que responen a encàrrecs concrets de la UB i de la UPC, com aquells que han realitzat un conjunt d’estudiants per recosir i fer ciutat d’una munió d’edificis, sovint de caràcter abstret i poc permeable, tallats per una avinguda de grans dimensions i disposats sense cap visió de conjunt.