You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These lecture notes provide a pedagogical introduction to quantum mechanics and to some of the mathematics that has been motivated by this field. They are a product of the school ``Entropy and the Quantum'', which took place in Tucson, Arizona, in 2009. They have been written primarily for young mathematicians, but they will also prove useful to more experienced analysts and mathematical physicists. In the first contribution, William Faris introduces the mathematics of quantum mechanics. Robert Seiringer and Eric Carlen review certain recent developments in stability of matter and analytic inequalities, respectively. Bruno Nachtergaele and Robert Sims review locality results for quantum systems, and Christopher King deals with additivity conjectures and quantum information theory. The final article, by Christian Hainzl, describes applications of analysis to the Shandrasekhar limit of stellar masses.
A collection of essays by many of the closest co-workers of Raphael Høegh-Krohn.
This volume contains the proceedings of the 1999 International Conference on Differential Equations and Mathematical Physics. The contributions selected for this volume represent some of the most important presentations by scholars from around the world on developments in this area of research. The papers cover topics in the general area of linear and nonlinear differential equations and their relation to mathematical physics, such as multiparticle Schrödinger operators, stability of matter, relativity theory, fluid dynamics, spectral and scattering theory including inverse problems. Titles in this series are co-published with International Press, Cambridge, MA.
Stochastic mechanics is a description of quantum phenomena in classical probabilistic terms. This work contains a detailed account of the kinematics of diffusion processes, including diffusions on curved manifolds which are necessary for the treatment of spin in stochastic mechanics. The dynamical equations of the theory are derived from a variational principle, and interference, the asymptotics of free motion, bound states, statistics, and spin are described in classical terms. In addition to developing the formal mathematical aspects of the theory, the book contains discussion of possible physical causes of quantum fluctuations in terms of an interaction with a background field. The author gives a critical analysis of stochastic mechanics as a candidate for a realistic theory of physical processes, discussing measurement, local causality in the sense of Bell, and the failure of the theory in its present form to satisfy locality.
In 2003 the XIV International Congress on Mathematical Physics (ICMP) was held in Lisbon with more than 500 participants. Twelve plenary talks were given in various fields of Mathematical Physics: E Carlen «On the relation between the Master equation and the Boltzmann Equation in Kinetic Theory»; A Chenciner «Symmetries and “simple” solutions of the classical n-body problem»; M J Esteban «Relativistic models in atomic and molecular physics»; K Fredenhagen «Locally covariant quantum field theory»; K Gawedzki «Simple models of turbulent transport»; I Krichever «Algebraic versus Liouville integrability of the soliton systems»; R V Moody «Long-range order and diffraction in math...
This edited volume collects six surveys that present state-of-the-art results on modeling, qualitative analysis, and simulation of active matter, focusing on specific applications in the natural sciences. Following the previously published Active Particles volumes, these chapters are written by leading experts in the field and reflect the diversity of subject matter in theory and applications within an interdisciplinary framework. Topics covered include: Variability and heterogeneity in natural swarms Multiscale aspects of the dynamics of human crowds Mathematical modeling of cell collective motion triggered by self-generated gradients Clustering dynamics on graphs Random Batch Methods for classical and quantum interacting particle systems The consensus-based global optimization algorithm and its recent variants Mathematicians and other members of the scientific community interested in active matter and its many applications will find this volume to be a timely, authoritative, and valuable resource.
Linear Algebra: An Introduction Using MAPLE is a text for a first undergraduate course in linear algebra. All students majoring in mathematics, computer science, engineering, physics, chemistry, economics, statistics, actuarial mathematics and other such fields of study will benefit from this text. The presentation is matrix-based and covers the standard topics for a first course recommended by the Linear Algebra Curriculum Study Group. The aim of the book is to make linear algebra accessible to all college majors through a focused presentation of the material, enriched by interactive learning and teaching with MAPLE. Development of analytical and computational skills is emphasized throughout Worked examples provide step-by-step methods for solving basic problems using Maple The subject's rich pertinence to problem solving across disciplines is illustrated with applications in engineering, the natural sciences, computer animation, and statistics
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.
Among all areas of mathematics, algebra is one of the best suited to find applications within the frame of our booming technological society. The thirty-eight articles in this volume encompass the proceedings of the International Conference on Algebra and Its Applications (Athens, OH, 1999), which explored the applications and interplay among the disciplines of ring theory, linear algebra, and coding theory. The presentations collected here reflect the dialogue between mathematicians involved in theoretical aspects of algebra and mathematicians involved in solving problems where state-of-the-art research tools may be used and applied. This Contemporary Mathematics series volume communicates the potential for collaboration among those interested in exploring the wealth of applications for abstract algebra in fields such as information and coding. The expository papers would serve well as supplemental reading in graduate seminars.
This book contains the proceedings of the special session in honor of Leonard Gross held at the annual Joint Mathematics Meetings in New Orleans (LA). The speakers were specialists in a variety of fields, and many were Professor Gross's former Ph.D. students and their descendants. Papers in this volume present results from several areas of mathematics. They illustrate applications of powerful ideas that originated in Gross's work and permeate diverse fields. Topics include stochastic partial differential equations, white noise analysis, Brownian motion, Segal-Bargmann analysis, heat kernels, and some applications. The volume should be useful to graduate students and researchers. It provides perspective on current activity and on central ideas and techniques in the topics covered.