You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A collection of 20 refereed research or review papers presented at a six-day seminar in Switzerland. The contributions focus on stochastic analysis, its applications to the engineering sciences, and stochastic methods in financial models, which was the subject of a minisymposium.
Presented as a series of lectures, this important volume achieves four major goals: 1) It integrates the results of the author's research as applied to pattern perception -- reviewing current brain research and showing how several lines of inquiry have been converging to produce a paradigm shift in our understanding of the neural basis of figural perception. 2) It updates the holographic hypothesis of brain function in perception. 3) It emphasizes the fact that both distributed (holistic) and localized (structural) processes characterize brain function. 4) It portrays a neural systems analysis of brain organization in figural perception by computational models -- describing processing in terms of formalisms found useful in ordering data in 20th-century physical and engineering sciences. The lectures are divided into three parts: a Prolegomenon outlining a theoretical framework for the presentation; Part I dealing with the configural aspects of perception; and Part II presenting its cognitive aspects. The appendices were developed in a collaborative effort by the author, Kunio Yasue, and Mari Jibu (both of Notre Dame Seishin University of Okayama, Japan).
This volume highlights recent developments of stochastic analysis with a wide spectrum of applications, including stochastic differential equations, stochastic geometry, and nonlinear partial differential equations. While modern stochastic analysis may appear to be an abstract mixture of classical analysis and probability theory, this book shows that, in fact, it can provide versatile tools useful in many areas of applied mathematics where the phenomena being described are random. The geometrical aspects of stochastic analysis, often regarded as the most promising for applications, are specially investigated by various contributors to the volume.
This change of perspective results in a radically new vision of how the brain functions
This volume contains a series of articles on wave phenomena and fluid dynamics, highlighting recent advances in these two areas of mathematics. The collection is based on lectures presented at the conference Fluids and Waves--Recent Trends in Applied Analysis and features a rich spectrum of mathematical techniques in analysis and applications to engineering, neuroscience, physics, and biology. The mathematical topics discussed range from partial differential equations, dynamical systems and stochastic processes, to areas of classical analysis. This volume is intended as an introduction to major topics of interest and state-of-the-art analytical research in wave motion and fluid flows.
With the recent increase in available computing power, new computations are possible in many areas of arithmetic geometry. To name just a few examples, Cremona's tables of elliptic curves now go up to conductor 120,000 instead of just conductor 1,000, tables of Hilbert class fields are known for discriminant up to at least 5,000, and special values of Hilbert and Siegel modular forms can be calculated to extremely high precision. In many cases, these experimental capabilities haveled to new observations and ideas for progress in the field. They have also led to natural algorithmic questions on the feasibility and efficiency of many computations, especially for the purpose of applications in cryptography. The AMS Special Session on Computational Arithmetic Geometry, held onApril 29-30, 2006, in San Francisco, CA, gathered together many of the people currently working on the computational and algorithmic aspects of arithmetic geometry. This volume contains research articles related to talks given at the session. The majority of articles are devoted to various aspects of arithmetic geometry, mainly with a computational approach.
This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications. The purpose of ...
This book begins with a historical essay entitled OC Will the Sun Rise Again?OCO and ends with a general address entitled OC Mathematics and ApplicationsOCO. The articles cover an interesting range of topics: combinatoric probabilities, classical limit theorems, Markov chains and processes, potential theory, Brownian motion, SchrAdingerOCoFeynman problems, etc. They include many addresses presented at international conferences and special seminars, as well as memorials to and reminiscences of prominent contemporary mathematicians and reviews of their works. Rare old photos of many of them enliven the book. Contents: On Mutually Favorable Events; On Fluctuations in Coin-Tossing; On a Stochastic Approximation Method; On the Martin Boundary for Markov Chains; A Cluster of Great Formulas; Probabilistic Methods in Markov Chains; Markov Processes with Infinities; Probability Methods in Potential Theory; Plya''s Work in Probability; Probability and Doob; In Memory of L(r)vy and Fr(r)chet; and other papers. Readership: Graduate students, teachers and researchers in probability and statistics."
This unique volume presents a collection of the extensive journal publications written by Kai Lai Chung over a span of 70-odd years. It was produced to celebrate his 90th birthday. The selection is only a subset of the many contributions that he made throughout his prolific career. Another volume, Chance and Choice, published by World Scientific in 2004, contains yet another subset, with four articles in common with this volume. Kai Lai Chung''s research contributions have had a major influence on several areas in probability. Among his most significant works are those related to sums of independent random variables, Markov chains, time reversal of Markov processes, probabilistic potential theory, Brownian excursions, and gauge theorems for the SchrAdinger equation.As Kai Lai Chung''s contributions spawned critical new developments, this volume also contains retrospective and perspective views provided by collaborators and other authors who themselves advanced the areas of probability and mathematics."
The book collects a series of papers centered on two main streams: Feynman path integral approach to Quantum Mechanics and statistical mechanics of quantum open systems. Key authors discuss the state-of-the-art within their fields of expertise. In addition, the volume includes a number of contributed papers with new results, which have been thoroughly refereed. The contributions in this volume highlight emergent research in the area of stochastic analysis and mathematical physics, focusing, in particular on Feynman functional integral approach and, on the other hand, in quantum probability. The book is addressed to an audience of mathematical physicists, as well as specialists in probability theory, stochastic analysis and operator algebras. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."