You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. - The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field
Optoelectronics and electronics of the years to come are likely to change dramatically. Most of the outdoor lighting systems will be replaced by light-emitting diodes that operate in the whole visible part of the electromagnatic spectrum. Transistors operating at high frequency and with high power are under development and likely to hit the market very rapidly. Compact solid-state lasers that operate in the near-ultraviolet range are going to be utilized for such widely used applications as read-write tasks in printer and CD drives. Ultraviolet detectors will be used at a wide scale for many application, ranging from flame detectors to medical instruments. This book concerns itself with the questions why nitride semiconductors are so promising over such a wide range of applications, what the current issues are in the research laboratories, and what the prospects of new electronic devices are in the dawn of the twenty-first century.
The book is a history of Molecular Beam Epitaxy (MBE) as applied to the growth of semiconductor thin films (note that it does not cover the subject of metal thin films). It begins by examining the origins of MBE, first of all looking at the nature of molecular beams and considering their application to fundamental physics, to the development of nuclear magnetic resonance and to the invention of the microwave MASER. It shows how molecular beams of silane (SiH4) were used to study the nucleation of silicon films on a silicon substrate and how such studies were extended to compound semiconductors such as GaAs. From such surface studies in ultra-high vacuum the technique developed into a method ...
Semiconductor lasers have important applications in numerous fields, including engineering, biology, chemistry and medicine. They form the backbone of the optical telecommunications infrastructure supporting the internet, and are used in information storage devices, bar-code scanners, laser printers and many other everyday products. Semiconductor lasers: Fundamentals and applications is a comprehensive review of this vital technology.Part one introduces the fundamentals of semiconductor lasers, beginning with key principles before going on to discuss photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation. Pa...
Mid-infrared Optoelectronics: Materials, Devices, and Applications addresses the new materials, devices and applications that have emerged over the last decade, along with exciting areas of research. Sections cover fundamentals, light sources, photodetectors, new approaches, and the application of mid-IR devices, with sections discussing LEDs, laser diodes, and quantum cascade lasers, mid-infrared optoelectronics, emerging research areas, dilute bismide and nitride alloys, Group-IV materials, gallium nitride heterostructures, and new nonlinear materials. Finally, the most relevant applications of mid-infrared devices are reviewed in industry, gas sensing, spectroscopy, and imaging. This book...
Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductor...
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances mad...
Silicon Photonics, Volume 99 in the Semiconductors and Semimetals series, highlights new advances in the field, with this updated volume presenting interesting chapters on Transfer printing in Silicon Photonics, Epitaxial integration of antimonide-based semiconductor lasers on Si, Photonic crystal lasers and nanolasers on Si, the Evolution of monolithic quantum-dot light source for silicon photonics, III-V on Si nanocomposites, the Heterogeneous integration of III-V on Si by bonding, the Growth of III-V on Silicon compliant substrates and lasers by MOCVD, Photonic Integrated Circuits on Si, Integrated Photonics for Bio- and Environmental sensing, Membrane Lasers/Photodiodes on Si, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Represents the latest release in the Semiconductors and Semimetals series - Updated release includes the latest information on Silicon Photonics
Defect Recognition and Image Processing in Semiconductors 1997 provides a valuable overview of current techniques used to assess, monitor, and characterize defects from the atomic scale to inhomogeneities in complete silicon wafers. This volume addresses advances in defect analyzing techniques and instrumentation and their application to substrates, epilayers, and devices. The book discusses the merits and limits of characterization techniques; standardization; correlations between defects and device performance, including degradation and failure analysis; and the adaptation and application of standard characterization techniques to new materials. It also examines the impressive advances made possible by the increase in the number of nanoscale scanning techniques now available. The book investigates defects in layers and devices, and examines the problems that have arisen in characterizing gallium nitride and silicon carbide.
These three day symposia were designed to provide a link between specialists from university or industry who work in different fields of semiconductor optoelectronics. Symposium A dealt with topics including: epitaxial growth of III-V, II-VI, IV-VI, Si-based structures; selective-area, localized and non-planar epitaxy, shadow-mask epitaxy; bulk and new optoelectronic materials; polymers for optoelectronics. Symposium B dealt with III-V epitaxial layers grown by low temperature molecular beam epitaxy, a subject which has undergone rapid development in the last three years.