You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An illuminating biography of one of the greatest geometers of the twentieth century Driven by a profound love of shapes and symmetries, Donald Coxeter (1907–2003) preserved the tradition of classical geometry when it was under attack by influential mathematicians who promoted a more algebraic and austere approach. His essential contributions include the famed Coxeter groups and Coxeter diagrams, tools developed through his deep understanding of mathematical symmetry. The Man Who Saved Geometry tells the story of Coxeter’s life and work, placing him alongside history’s greatest geometers, from Pythagoras and Plato to Archimedes and Euclid—and it reveals how Coxeter’s boundless creativity reflects the adventurous, ever-evolving nature of geometry itself. With an incisive, touching foreword by Douglas R. Hofstadter, The Man Who Saved Geometry is an unforgettable portrait of a visionary mathematician.
Classification of Finite Simple Groups, one of the most monumental accomplishments of modern mathematics, was announced in 1983 with the proof completed in 2004. Since then, it has opened up a new and powerful strategy to approach and resolve many previously inaccessible problems in group theory, number theory, combinatorics, coding theory, algebraic geometry, and other areas of mathematics. This strategy crucially utilizes various information about finite simple groups, part of which is catalogued in the Atlas of Finite Groups (John H. Conway et al.), and in An Atlas of Brauer Characters (Christoph Jansen et al.). It is impossible to overestimate the roles of the Atlases and the related com...
Combinatorics '81
Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom...