You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the Virtual Conference on Noncommutative Rings and their Applications VII, in honor of Tariq Rizvi, held from July 5–7, 2021, and the Virtual Conference on Quadratic Forms, Rings and Codes, held on July 8, 2021, both of which were hosted by the Université d'Artois, Lens, France. The articles cover topics in commutative and noncommutative algebra and applications to coding theory. In some papers, applications of Frobenius rings, the skew group rings, and iterated Ore extensions to coding theory are discussed. Other papers discuss classical topics, such as Utumi rings, Baer rings, nil and nilpotent algebras, and Brauer groups. Still other articles are devoted to various aspects of the elementwise study for rings and modules. Lastly, this volume includes papers dealing with questions in homological algebra and lattice theory. The articles in this volume show the vivacity of the research of noncommutative rings and its influence on other subjects.
This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at the Independent University of Moscow and Moscow State University, Moscow, Russia. The papers are devoted to various interrelations of nonlinear PDEs with geometry and integrable systems. The topics discussed are: gravitational and electromagnetic fields in General Relativity, nonlocal geometry of PDEs, Legendre foliated cocycles on contact manifolds, presymplectic gauge PDEs and Lagrangian BV formalism, jet geometry and high-order phase transitions, bi-Hamiltonian structures of KdV type, bundles of Weyl structures, Lax representations via twisted extensions of Lie algebras, energy functionals and normal forms of knots, and differential invariants of inviscid flows. The companion volume (Contemporary Mathematics, Volume 789) is devoted to Algebraic and Cohomological Aspects of PDEs.
This new book presents research in orthogonal polynomials and special functions. Recent developments in the theory and accomplishments of the last decade are pointed out and directions for research in the future are identified. The topics covered include matrix orthogonal polynomials, spectral theory and special functions, Asymptotics for orthogonal polynomials via Riemann-Hilbert methods, Polynomial wavelets and Koornwinder polynomials.
This book contains contributions from the proceedings at The Fields Institute workshop on Special Functions, q-Series and Related Topics that was held in June 1995. The articles cover areas from quantum groups and their representations, multivariate special functions, q-series, and symbolic algebra techniques as well as the traditional areas of single-variable special functions. The book contains both pure and applied topics and reflects recent trends of research in the various areas of special functions.
The book contains seven refereed research papers on locally compact quantum groups and groupoids by leading experts in the respective fields. These contributions are based on talks presented on the occasion of the meeting between mathematicians and theoretical physicists held in Strasbourg from February 21 to February 23, 2002. Topics covered are: various constructions of locally compact quantum groups and their multiplicative unitaries; duality theory for locally compact quantum groups; combinatorial quantization of flat connections associated with SL(2,c); quantum groupoids, especially coming from Depth 2 Extensions of von Neumann algebras, C*-algebras and Rings. Many mathematical results are motivated by problems in theoretical physics. Historical remarks set the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume will give an overview of a field of research in which great progress has been achieved in the last few years, with new ties to many other areas of mathematics and physics.
Contains graduate-level introductions by international experts to five areas of research in orthogonal polynomials and special functions.
This is part two of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
This volume contains the proceedings of the virtual conference on Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, held from February 28–March 1, 2021, and hosted by Purdue University, West Lafayette, IN. The mathematical content of this volume is at the intersection of viscosity theory, Fourier analysis, mass transport theory, fractional elliptic theory, and geometric analysis. The reader will encounter, among others, the following topics: the principal-agent problem; Maxwell's equations; Liouville-type theorems for fully nonlinear elliptic equations; a doubly monotone flow for constant width bodies; and the edge dislocations problem for crystals that describes the equilibrium configurations by a nonlocal fractional Laplacian equation.
The Advanced Study Institute brought together researchers in the main areas of special functions and applications to present recent developments in the theory, review the accomplishments of past decades, and chart directions for future research. Some of the topics covered are orthogonal polynomials and special functions in one and several variables, asymptotic, continued fractions, applications to number theory, combinatorics and mathematical physics, integrable systems, harmonic analysis and quantum groups, Painlevé classification.
This volume contains the proceedings of the virtual AMS Special Session on Geometric and Algebraic Aspects of Quantum Groups and Related Topics, held from November 20–21, 2021. Noncommutative algebras and noncommutative algebraic geometry have been an active field of research for the past several decades, with many important applications in mathematical physics, representation theory, number theory, combinatorics, geometry, low-dimensional topology, and category theory. Papers in this volume contain original research, written by speakers and their collaborators. Many papers also discuss new concepts with detailed examples and current trends with novel and important results, all of which are invaluable contributions to the mathematics community.