You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book contains seven refereed research papers on locally compact quantum groups and groupoids by leading experts in the respective fields. These contributions are based on talks presented on the occasion of the meeting between mathematicians and theoretical physicists held in Strasbourg from February 21 to February 23, 2002. Topics covered are: various constructions of locally compact quantum groups and their multiplicative unitaries; duality theory for locally compact quantum groups; combinatorial quantization of flat connections associated with SL(2,c); quantum groupoids, especially coming from Depth 2 Extensions of von Neumann algebras, C*-algebras and Rings. Many mathematical results are motivated by problems in theoretical physics. Historical remarks set the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume will give an overview of a field of research in which great progress has been achieved in the last few years, with new ties to many other areas of mathematics and physics.
This volume is based on the proceedings of the Hopf-Algebras and Quantum Groups conference at the Free University of Brussels, Belgium. It presents state-of-the-art papers - selected from over 65 participants representing nearly 20 countries and more than 45 lectures - on the theory of Hopf algebras, including multiplier Hopf algebras and quantum g
This book contains carefully revised and expanded versions of eight courses that were presented at the University of Strasbourg during two geometry master classes in 2008 and 2009. The aim of the master classes was to give fifth-year students and Ph.D. students in mathematics the opportunity to learn new topics that lead directly to the current research in geometry and topology. The courses were taught by leading experts. The subjects treated include hyperbolic geometry, three-manifold topology, representation theory of fundamental groups of surfaces and of three-manifolds, dynamics on the hyperbolic plane with applications to number theory, Riemann surfaces, Teichmuller theory, Lie groups, and asymptotic geometry. The text is aimed at graduate students and research mathematicians. It can also be used as a reference book and as a textbook for short courses on geometry.
Hopf algebras have important connections to quantum theory, Lie algebras, knot and braid theory, operator algebras and other areas of physics and mathematics. They have been intensely studied in the past; in particular, the solution of a number of conjectures of Kaplansky from the 1970s has led to progress on the classification of semisimple Hopf algebras and on the structure of pointed Hopf algebras. Among the topics covered are results toward the classification of finite-dimensional Hopf algebras (semisimple and non-semisimple), as well as what is known about the extension theory of Hopf algebras. Some papers consider Hopf versions of classical topics, such as the Brauer group, while others are closer to work in quantum groups. The book also explores the connections and applications of Hopf algebras to other fields.
`The most important single thing about this conference was that it brought together for the first time representatives of all major groups of users of hypergroups. [They] talked to each other about how they were using hypergroups in fields as diverse as special functions, probability theory, representation theory, measure algebras, Hopf algebras, and Hecke algebras. This led to fireworks.' - from the Introduction. Hypergroups occur in a wide variety of contexts, and mathematicians the world over have been discovering this same mathematical structure hidden in very different applications. The diverse viewpoints on the subject have led to the need for a common perspective, if not a common theory. Presenting the proceedings of a Joint Summer Research Conference held in Seattle in the summer of 1993, this book will serve as a valuable starting point and reference tool for the wide range of users of hypergroups and make it easier for an even larger audience to use these structures in their work.
This volume is the outcome of a CIRM Workshop on Renormalization and Galois Theories held in Luminy, France, in March 2006. The subject of this workshop was the interaction and relationship between four currently very active areas: renormalization in quantum field theory (QFT), differential Galois theory, noncommutative geometry, motives and Galois theory. The last decade has seen a burst of new techniques to cope with the various mathematical questions involved in QFT, with notably the development of a Hopf-algebraic approach and insights into the classes of numbers and special functions that systematically appear in the calculations of perturbative QFT (pQFT). The analysis of the ambiguiti...
Since its discovery in 1997 by Maldacena, AdS/CFT correspondence has become one of the prime subjects of interest in string theory, as well as one of the main meeting points between theoretical physics and mathematics. On the physical side, it provides a duality between a theory of quantum gravity and a field theory. The mathematical counterpart is the relation between Einstein metrics and their conformal boundaries. The correspondence has been intensively studied, and a lot of progress emerged from the confrontation of viewpoints between mathematics and physics. Written by leading experts and directed at research mathematicians and theoretical physicists as well as graduate students, this volume gives an overview of this important area both in theoretical physics and in mathematics. It contains survey articles giving a broad overview of the subject and of the main questions, as well as more specialized articles providing new insight both on the Riemannian side and on the Lorentzian side of the theory.
The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.
The volume is a collection of refereed research papers on infinite dimensional groups and manifolds in mathematics and quantum physics. Topics covered are: new classes of Lie groups of mappings, the Burgers equation, the Chern--Weil construction in infinite dimensions, the hamiltonian approach to quantum field theory, and different aspects of large N limits ranging from approximation methods in quantum mechanics to modular forms and string/gauge theory duality. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of important themes of research at the forefront of mathematics and theoretical physics.
Hyperbolic and kinetic equations arise in a large variety of industrial problems. For this reason, the Summer Mathematical Research Center on Scientific Computing and its Applications (CEMRACS), held at the Center of International Research in Mathematics (CIRM) in Luminy, was devoted to this topic. During a six-week period, junior and senior researchers worked full time on several projects proposed by industry and academia. Most of this work was completed later on, and the present book reflects these results. The articles address modelling issues as well as the development and comparisons of numerical methods in different situations. The applications include multi-phase flows, plasma physics, quantum particle dynamics, radiative transfer, sprays, and aeroacoustics. The text is aimed at researchers and engineers interested in applications arising from modelling and numerical simulation of hyperbolic and kinetic problems.