You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An annotated bibliography of over 2,050 references associated with borate minerals from Death Valley, Mojave Desert, and Nevada. Sources include journal articles, papers, conference proceedings, books, book chapters, and other literature published from the 1860s into 2024. The bibliography is divided into 16 chapters: History, Boron and Borates, Chemistry and Crystal Structure, Mineralogy, Geology, California, Death Valley, Searles Lake, Mojave Desert, Kramer, Calico, Fort Cady, Tick Canyon, Ventura, Nevada, and Annual Reviews. Contains appendices of supplemental information on borate minerals, color photographs, and an alphabetical index of authors. 638 pages. Key words: borax, colemanite, kernite, probertite, and ulexite.
NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.
This is the fourth edition of a work which first appeared in 1965. The first edition had approximately one thousand pages in a single volume. This latest volume has almost three thousand pages in 3 volumes which is a fair measure of the pace at which the discipline of physical metallurgy has grown in the intervening 30 years.Almost all the topics previously treated are still in evidence in this version which is approximately 50% bigger than the previous edition. All the chapters have been either totally rewritten by new authors or thoroughly revised and expanded, either by the third-edition authors alone or jointly with new co-authors. Three chapters on new topics have been added, dealing wi...
Intermetallic science is closely related to physics, chemistry, metallurgy, materials science & technology, and engineering. This book emphasizes the chemical aspects of this science, and therefore the mutual reactivity of metals and the characteristics of intermetallic compounds. Topics included are:• Phase diagrams of alloy systems. Many intermetallic systems form several compounds, generally not obeying common simple stoichiometric rules, which are often homogeneous in a certain range of compositions. The stability and extension of these phases are conveniently presented through phase diagrams.• Selected aspects of intermetallics structural chemistry, with emphasis on the solid state....
Powder diffraction is a widely used scientific technique in the characterization of materials with broad application in materials science, chemistry, physics, geology, pharmacology and archaeology. Powder Diffraction: Theory and Practice provides an advanced introductory text about modern methods and applications of powder diffraction in research and industry. The authors begin with a brief overview of the basic theory of diffraction from crystals and powders. Data collection strategies are described including x-ray, neutron and electron diffraction setups using modern day apparatus including synchrotron sources. Data corrections, essential for quantitative analysis are covered before the au...
None
Selected, peer reviewed papers from the XXth International Conference on Solid Compounds of Transition Elements (SCTE2016), April 11-15, 2016, Zaragoza, Spain
Volume 20 of Reviews in Mineralogy attempted to: (1) provide examples illustrating the state-of-the-art in powder diffraction, with emphasis on applications to geological materials; (2) describe how to obtain high-quality powder diffraction data; and (3) show how to extract maximum information from available data. In particular, the nonambient experiments are examples of some of the new and exciting areas of study using powder diffraction, and the interested reader is directed to the rapidly growing number of published papers on these subjects. Powder diffraction has evolved to a point where considerable information can be obtained from ug-sized samples, where detection limits are in the hundreds of ppm range, and where useful data can be obtained in milliseconds to microseconds. We hope that the information in this volume will increase the reader's access to the considerable amount of information contained in typical diffraction data.