You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.
An increasing population faces the growing demand for agricultural products and accurate global climate models that account for individual plant morphologies to predict favorable human habitat. Both demands are rooted in an improved understanding of the mechanistic origins of plant development. Such understanding requires geometric and topological descriptors to characterize the phenotype of plants and its link to genotypes. However, the current plant phenotyping framework relies on simple length and diameter measurements, which fail to capture the exquisite architecture of plants. The Research Topic “Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the P...
Trees are among the longest-living organisms. They are sensitive to extreme climatic events and document the effects of environmental changes in form of structural modifications of their tissues. These modifications represent an integrated signal of complex biological responses enforced by the environment. For example, temporal change in stem increment integrates multiple information of tree performance, and wood anatomical traits may be altered by climatic extremes or environmental stress. Recent developments in preparative tools and computational image analysis enable to quantify changes in wood anatomical features, like vessel density or vessel size. Thus, impacts on their functioning can...
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
None
No. 1- directories of the society's members.