You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the stu...
This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
In several proofs from the theory of finite-dimensional Lie algebras, an essential contribution comes from the Jordan canonical structure of linear maps acting on finite-dimensional vector spaces. On the other hand, there exist classical results concerning Lie algebras which advise us to use infinite-dimensional vector spaces as well. For example, the classical Lie Theorem asserts that all finite-dimensional irreducible representations of solvable Lie algebras are one-dimensional. Hence, from this point of view, the solvable Lie algebras cannot be distinguished from one another, that is, they cannot be classified. Even this example alone urges the infinite-dimensional vector spaces to appear...
These 35 refereed articles report on recent and original results in various areas of operator theory and connected fields, many of them strongly related to contributions of Sz.-Nagy. The scientific part of the book is preceeded by fifty pages of biographical material, including several photos.
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. Many results appear here for the first time in a monograph.
The theory of operators stands at the intersection of the frontiers of modern analysis and its classical counterparts; of algebra and quantum mechanics; of spectral theory and partial differential equations; of the modern global approach to topology and geometry; of representation theory and harmonic analysis; and of dynamical systems and mathematical physics. The present collection of papers represents contributions to a conference, and they have been carefully selected with a view to bridging different but related areas of mathematics which have only recently displayed an unexpected network of interconnections, as well as new and exciting cross-fertilizations. Our unify ing theme is the al...
Since 1976 the Institute of Mathematics of the Romanian Academy (formerly the Department of Mathematics of INCREST) and the Faculty of Mathematics (formerly the Faculty of Sciences) of the University ofTimi~oara have organized several Con ferences on Operator Theory. These Conferences were held yearly in Timi~oara (or in Timi~oara and Herculane) and beginning with 1985 they were held in Bucharest (1985,1986), in Timi~oara (1988) and in Predeal (1990). At the beginning, these Conferences answered the need of a part of the Romanian Mathematical Community ofexploring other forms of survival, after the dissolution of the Institute of Mathematics in 1975. Soon, these meetings evolved to Internati...
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Functional Analysis: Surveys and Recent Results
The need to study holomorphic mappings in infinite dimensional spaces, in all likelihood, arose for the first time in connection with the development of nonlinear analysis. A systematic study of integral equations with an analytic nonlinear part was started at the end of the 19th and the beginning of the 20th centuries by A. Liapunov, E. Schmidt, A. Nekrasov and others. Their research work was directed towards the theory of nonlinear waves and used mainly the undetermined coefficients and the majorant power series methods, which subsequently have been refined and developed. Parallel with these achievements, the theory of functions of one or several complex variables was gradually enriched wi...