You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
On Some Operator Colligations and Associated Reproducing Kernel Spaces.- On the Spectra of Selfadjoint Extensions.- On the Spectrum of Singular Nonselfadjoint Differential Operators.- The Commutant Lifting Theorem for Contractions on Kre?n Spaces.- A Method for Constructing Invariant Subspaces for some Operators on Kre?n Spaces.- Applications of the Furuta Inequality to Operator Inequalities and Norm Inequalities Preserving some Orders.- Quasi-contractions on Kre?n Spaces.- Antitonicity of the Inverse and J-Contractivity.- Unitary Extensions of a System of Commuting Isometric Operators.- Some Generalizations of Classical Interpolation Problems.- The Kobayashi Distance between two Contractions.- The Category of Quotient Bornological Spaces.
The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the stu...
This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.
The aim of this first international conference entirely devoted to the theory of elementary operators and their interrelations with and applications to other fields was both to give a comprehensive overview of the development of the theory of elementary operators since its beginnings at the end of the last century as well as to discuss some of the recent research done in this area. The volume also includes applications to algebraic properties of linear mappings (on rings as well as on Banach algebras), or to mathematical physics, and connections to related fields such as multiparameter spectral theory.
This volume contains the proceedings of the Workshop on Problems and Recent Methods in Operator Theory, held at the University of Memphis, Memphis, TN, from October 15–16, 2015 and the AMS Special Session on Advances in Operator Theory and Applications, in Memory of James Jamison, held at the University of Memphis, Memphis, TN, from October 17–18, 2015. Operator theory is at the root of several branches of mathematics and offers a broad range of challenging and interesting research problems. It also provides powerful tools for the development of other areas of science including quantum theory, physics and mechanics. Isometries have applications in solid-state physics. Hermitian operators...
This volume is dedicated to V. A. Marchenko on the occasion of his 90th birthday. It contains refereed original papers and survey articles written by his colleagues and former students of international stature and focuses on the areas to which he made important contributions: spectral theory of differential and difference operators and related topics of mathematical physics, including inverse problems of spectral theory, homogenization theory, and the theory of integrable systems. The papers in the volume provide a comprehensive account of many of the most significant recent developments in that broad spectrum of areas.
Contains the proceedings of the international conference "Ordered Algebraic Structures and Related Topics", held in October 2015, at CIRM, Luminy, Marseilles. Papers cover topics in real analytic geometry, real algebra, and real algebraic geometry including complexity issues, model theory of various algebraic and differential structures, Witt equivalence of fields, and the moment problem.
Over the course of his distinguished career, Jörg Eschmeier made a number of fundamental contributions to the development of operator theory and related topics. The chapters in this volume, compiled in his memory, are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.