You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret biomolecular properties gleaned from computer-generated membrane simulations. It also demonstrates comparative protein structure modeling, outlines computer-aided drug design, discusses Bayesian statistics in molecular and structural biology, and examines the RISM-SCF/MCSCF approach to chemical processes in solution.
This two volume set describes innovations in biomolecular modeling and simulation, in both the algorithmic and application fronts.
Volumetric properties play an important role in research at the interface of physical chemistry and chemical engineering, but keeping up with the latest developments in the field demands a broad view of the literature. Presenting a collection of concise, focused chapters, this book offers a comprehensive guide to the latest developments in the field and a starting point for more detailed research. The chapters are written by acknowledged experts, covering theory, experimental methods, techniques, and results on all types of liquids and vapours. The editors work at the forefront of thermodynamics in mixtures and solutions and have brought together contributions from all areas related to volume properties, offering a synergy of ideas across the field. Graduates, researchers and anyone working in the field of volumes will find this book to be their key reference.
Focusing on key methodological breakthroughs in the field, this book provides newcomers with a comprehensive menu of multiscale modelling options.
This book covers the theory and applications of continuum solvation models. The main focus is on the quantum-mechanical version of these models, but classical approaches and combined or hybrid techniques are also discussed. Devoted to solvation models in which reviews of the theory, the computational implementation Solvation continuum models are treated using the different points of view from experts belonging to different research fields Can be read at two levels: one, more introductive, and the other, more detailed (and more technical), on specific physical and numerical aspects involved in each issue and/or application Possible limitations or incompleteness of models is pointed out with, if possible, indications of future developments Four-colour representation of the computational modeling throughout.
Progress in Medicinal Chemistry
During the past decade there has been a dramatic expansion of our knowledge on phospholipases in general, and phospholipase A2 (PLA2) in particular. Progress in this field has been evident on many fronts, with novel information rapidly accumulating in the literature regarding the chemistry and molecular biology of this enzyme and its role in many important physiological processes. These include cellular signal transduction via the G-protein cycle, and in the generation of many cellular mediators, such as the platelet activating factor (PAF) and the eicosanoids that participate in the initiation and propagation of inflammation, to mention a few. This symposium was organized to obtain an overv...
Biological systems are regulated by the thermodynamic parameters of pressure and temperature. New analytical and computational methods and various kinds of spectroscopy allow detailed studies of the structure and function of biological systems under extreme conditions, as well as the possibility to explicate the origin and evolution of life. This volume addresses researchers and students exploring the new world of biological systems under extreme environmental conditions.
The history of the liquid-liquid interface on the earth might be as old as that of the liquid. It is plausible that the generation of the primitive cell membrane is responsible for an accidental advent of the oldest liquid interfaces, since various compounds can be concentrated by an adsorption at the interface. The presence of liquid-liquid interface means that real liquids are far from ideal liquids that must be miscible with any kinds of liquids and have no interface. Thus it can be said that the non-ideality of liquids might generate the liquid-liquid interface indeed and that biological systems might be generated from the non-ideal interface. The liquid-liquid interface has been, theref...