Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics
  • Language: en
  • Pages: 862

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

  • Type: Book
  • -
  • Published: 2011-07-28
  • -
  • Publisher: Elsevier

The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book wil...

Frontiers of Multifunctional Integrated Nanosystems
  • Language: en
  • Pages: 493

Frontiers of Multifunctional Integrated Nanosystems

Proceedings of the NATO Advanced Research Workshop, Illmenau, Germany from 12 to 16 July 2003

Silicon-based Microphotonics: from Basics to Applications
  • Language: en
  • Pages: 472

Silicon-based Microphotonics: from Basics to Applications

  • Type: Book
  • -
  • Published: 1999
  • -
  • Publisher: IOS Press

The evolution of Si-based optoelectronics has been extremely fast in the last few years and it is predicted that this growth will still continue in the near future. The aim of the volume is to present different Si-based luminescing materials as porous silicon, rare-earth doped silicon, Si nanocrystals, silicides, Si-based multilayers and silicon-germanium alloy or superlattice structures. The different devices needed for an all-Si-based optoelectronics are treated, ranging from light sources to waveguides, from amplifiers and modulators to detectors. Both the very basic treatments as well as applications to real prototype devices and integration in an optical integrated circuit are presented. Several issues are highlighted: the problem of electrical transport in low-dimensional Si systems, the possibility of gain in Si-based systems, the low modulation speed of Si-based LEDs. The book gives a fascinating picture of the state-of-the-art in Si microphotonics and a perspective on what one can expect in the near future.

Silicon-Based Material and Devices, Two-Volume Set
  • Language: en
  • Pages: 646

Silicon-Based Material and Devices, Two-Volume Set

This book covers a broad spectrum of the silicon-based materials and their device applications. This book provides a broad coverage of the silicon-based materials including different kinds of silicon-related materials, their processing, spectroscopic characterization, physical properties, and device applications. This two-volume set offers a selection of timely topics on silicon materials namely those that have been extensively used for applications in electronic and photonic technologies. The extensive reference provides broad coverage of silicon-based materials, including different types of silicon-related materials, their processing, spectroscopic characterization, physical properties, an...

Optical Interconnects
  • Language: en
  • Pages: 397

Optical Interconnects

  • Type: Book
  • -
  • Published: 2007-05-17
  • -
  • Publisher: Springer

Optical Interconnects provides a fascinating picture of the state of the art in optical interconnects and a perspective on what can be expected in the near future. It is composed of selected reviews authored by world leaders in the field, and these reviews are written from either an academic or industrial viewpoint. An in-depth discussion of the path towards fully-integrated optical interconnects in microelectronics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microelectronics and optoelectronics.

Towards the First Silicon Laser
  • Language: en
  • Pages: 495

Towards the First Silicon Laser

Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book.

The Journal of the Assembly During the ... Session of the Legislature of the State of California
  • Language: en
  • Pages: 1804
Ion Beam Modification of Materials
  • Language: en
  • Pages: 1157

Ion Beam Modification of Materials

  • Type: Book
  • -
  • Published: 2012-12-02
  • -
  • Publisher: Newnes

This conference consisted of 15 oral sessions, including three plenary papers covering areas of general interest, 22 specialist invited papers and 51 contributed presentations as well as three poster sessions. There were several scientific highlights covering a diverse spectrum of materials and ion beam processing methods. These included a wide range of conventional and novel applications such as: optical displays and opto-electronics, motor vehicle and tooling parts, coatings tailored for desired properties, studies of fundamental defect properties, the production of novel (often buried) compounds, and treating biomedical materials. The study of nanocrystals produced by ion implantation in ...

Frontiers in Optical Technology
  • Language: en
  • Pages: 324

Frontiers in Optical Technology

This book maps out the frontiers of optical technology in two major subdisciplines: optical materials and optical devices. The optical materials and material architectures covered include nanostructured silicon, chiral sculptured thin films, magnetic photonic crystals, and switchable materials for efficient lighting and decorative optics. The optical devices addressed include silicon waveguides for integrated circuitry, high-speed electro-optic modulators, laser diodes coupled with fibre-tip lenses, and optical sensors. Reading the ten chapters, either altogether or piecemeal, the reader will receive a virtually up-to-date review of the state of the art.

Device Applications of Silicon Nanocrystals and Nanostructures
  • Language: en
  • Pages: 350

Device Applications of Silicon Nanocrystals and Nanostructures

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.