You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nanomechanics of Structures and Materials highlights and compares the advantages and disadvantages of diverse modeling and analysis techniques across a wide spectrum of different nanostructures and nanomaterials. It focuses on the behavior of media with nanostructural features where the classic continuum theory ceases to hold and augmented continuum theories such as nonlocal theory, gradient theory of elasticity, and the surface elasticity model should be adopted. These generalized frameworks, tailored to address the intricate characteristics inherent at the nanoscale level, are discussed in depth, and their application to a variety of different materials and structures, including graphene, ...
The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.
The book presents the proceedings of the XXV National Congress of the Italian Association of Theoretical and Applied Mechanics (Palermo, September 2022). The topics cover theoretical, computational, experimental and technical-applicative aspects. Chapters: Fluid Mechanics, Solid Mechanics, Structural Mechanics, Mechanics of Machine, Computational Mechanics, Biomechanics, Masonry Modelling and Analysis, Dynamical Systems in Civil and Mechanical Structures, Control and Experimental Dynamics, Mechanical Modelling of Metamaterials and Periodic Structures, Novel Stochastic Dynamics, Signal Processing Techniques for Civil Engineering Applications, Vibration-based Monitoring and Dynamic Identificat...
This book commemorates the 80th birthday of Prof. W. Pietraszkiewicz, a prominent specialist in the field of general shell theory. Reflecting Prof. Pietraszkiewicz’s focus, the respective papers address a range of current problems in the theory of shells. In addition, they present other structural mechanics problems involving dimension-reduced models. Lastly, several applications are discussed, including material models for such dimension-reduced structures.
This book develops a uniform accurate method which is capable of dealing with vibrations of laminated beams, plates and shells with arbitrary boundary conditions including classical boundaries, elastic supports and their combinations. It also provides numerous solutions for various configurations including various boundary conditions, laminated schemes, geometry and material parameters, which fill certain gaps in this area of reach and may serve as benchmark solutions for the readers. For each case, corresponding fundamental equations in the framework of classical and shear deformation theory are developed. Following the fundamental equations, numerous free vibration results are presented for various configurations including different boundary conditions, laminated sequences and geometry and material properties. The proposed method and corresponding formulations can be readily extended to static analysis.
Functionally Graded Materials: Analysis and Applications to FGM, FG-CNTRC and FG Porous Structures aims to disseminates knowledge between users, manufacturers, designers, and researchers involved in structures or structural components manufactured using functionally graded materials. Despite a number of existing texts on the theory and analysis of plates and/or shells, there is not a single book that is devoted entirely to the analysis of functionally graded-based materials including FGMs, FG-CNTRCs and FG porous plates and shells. Functionally Graded Materials provides the reader with current research conducted in the field of composite materials, numerical simulations, computer methods and mechanical responses of structural components under different scenarios. This book is a valuable reference source for postgraduate students, engineers, scientists, professors, researchers, and applied mathematicians in this field.
This book bridges the gap between theoretical concepts and their implementations, especially for the high-performance structures/components related to advanced composite materials. This work focuses on the prediction of various structural responses such as deformations, natural frequencies etc. of advanced composites under complex environments and/or loading conditions. In addition, it discusses micro-mechanical material modeling of various advanced composite materials that involve different structures ranging from basic to advanced, such as beams, flat and curved panels, shells, skewed, corrugated, and other materials, as well as various solution techniques via analytical, semi-analytical, ...