Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Bayesian Robustness
  • Language: en
  • Pages: 364

Bayesian Robustness

  • Type: Book
  • -
  • Published: 1996
  • -
  • Publisher: IMS

None

Parametric and Nonparametric Inference from Record-Breaking Data
  • Language: en
  • Pages: 123

Parametric and Nonparametric Inference from Record-Breaking Data

By providing a comprehensive look at statistical inference from record-breaking data in both parametric and nonparametric settings, this book treats the area of nonparametric function estimation from such data in detail. Its main purpose is to fill this void on general inference from record values. Statisticians, mathematicians, and engineers will find the book useful as a research reference. It can also serve as part of a graduate-level statistics or mathematics course.

Estimation in Conditionally Heteroscedastic Time Series Models
  • Language: en
  • Pages: 239

Estimation in Conditionally Heteroscedastic Time Series Models

In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.

Space, Structure and Randomness
  • Language: en
  • Pages: 402

Space, Structure and Randomness

Space, structure, and randomness: these are the three key concepts underlying Georges Matheron’s scientific work. He first encountered them at the beginning of his career when working as a mining engineer, and then they resurfaced in fields ranging from meteorology to microscopy. What could these radically different types of applications possibly have in common? First, in each one only a single realisation of the phenomenon is available for study, but its features repeat themselves in space; second, the sampling pattern is rarely regular, and finally there are problems of change of scale. This volume is divided in three sections on random sets, geostatistics and mathematical morphology. Th...

Bayesian Methods
  • Language: en
  • Pages: 696

Bayesian Methods

  • Type: Book
  • -
  • Published: 2007-11-26
  • -
  • Publisher: CRC Press

The first edition of Bayesian Methods: A Social and Behavioral Sciences Approach helped pave the way for Bayesian approaches to become more prominent in social science methodology. While the focus remains on practical modeling and basic theory as well as on intuitive explanations and derivations without skipping steps, this second edition incorpora

Robustness Analysis in Decision Aiding, Optimization, and Analytics
  • Language: en
  • Pages: 337

Robustness Analysis in Decision Aiding, Optimization, and Analytics

  • Type: Book
  • -
  • Published: 2016-07-12
  • -
  • Publisher: Springer

This book provides a broad coverage of the recent advances in robustness analysis in decision aiding, optimization, and analytics. It offers a comprehensive illustration of the challenges that robustness raises in different operations research and management science (OR/MS) contexts and the methodologies proposed from multiple perspectives. Aside from covering recent methodological developments, this volume also features applications of robust techniques in engineering and management, thus illustrating the robustness issues raised in real-world problems and their resolution within advances in OR/MS methodologies. Robustness analysis seeks to address issues by promoting solutions, which are a...

Information Quality
  • Language: en
  • Pages: 381

Information Quality

Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance at many stages of the data analytics journey, from the...

Sensitivity Analysis
  • Language: en
  • Pages: 515

Sensitivity Analysis

Sensitivity analysis is used to ascertain how a given model output depends upon the input parameters. This is an important method for checking the quality of a given model, as well as a powerful tool for checking the robustness and reliability of its analysis. The topic is acknowledged as essential for good modelling practice, and is an implicit part of any modelling field. · Offers an accessible introduction to sensitivity analysis · Covers all the latest research · Illustrates concepts with numerous examples, applications and case studies · Includes contributions form the leading researchers active in developing strategies for sensitivity analysis The principles of sensitivity analysis...

Bayesian Thinking, Modeling and Computation
  • Language: en
  • Pages: 1062

Bayesian Thinking, Modeling and Computation

  • Type: Book
  • -
  • Published: 2005-11-29
  • -
  • Publisher: Elsevier

This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics

The Contribution of Young Researchers to Bayesian Statistics
  • Language: en
  • Pages: 195

The Contribution of Young Researchers to Bayesian Statistics

The first Bayesian Young Statisticians Meeting, BAYSM 2013, has provided a unique opportunity for young researchers, M.S. students, Ph.D. students, and post-docs dealing with Bayesian statistics to connect with the Bayesian community at large, exchange ideas, and network with scholars working in their field. The Workshop, which took place June 5th and 6th 2013 at CNR-IMATI, Milan, has promoted further research in all the fields where Bayesian statistics may be employed under the guidance of renowned plenary lecturers and senior discussants. A selection of the contributions to the meeting and the summary of one of the plenary lectures compose this volume.