You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
CD-ROM contains the programs described v. 3 and listed in the appendices of the sessions.
Folding and Fracturing of Rocks was first published in 1967. It was one of the first major publications aimed at developing for geologists the basic theory of stress and strain in mathematical terms and explaining how this theory could be used to solve practical problems in structural geology and tectonics. Although out-of-print for many years, it is still one of the most frequently cited and quoted texts in modern research publications in structural geology.
This Special Publication is a celebration of research into the Folding and Fracturing of Rocks to mark the 50th anniversary of the publication of the seminal textbook by J. G. Ramsay. Folding and Fracturing of Rocks summarised the key structural geology concepts of the time. Through his numerical and geometric focus John pioneered and provided solutions to understanding the processes leading to the folding and fracturing of rocks. His strong belief that numerical and geometric solutions, to understanding crustal processes, should be tested against field examples added weight and clarity to his work. The basic ideas and solutions presented in the text are as relevant now as they were 50 years ago, and this collection of papers celebrates John’s contribution to structural geology. The papers explore the lasting impact of John and his work, they present case studies and a modern understanding of the process documented in the Folding and Fracturing of Rocks.
Styles of Folding: Mechanics and Mechanisms of Folding of Natural Elastic Materials, Developments in Geotectonics 11, provides an introduction to theoretical underpinnings of folds in rocks. The book begins with a review of studies which have been most significant to the development of current understanding of folds. It then turns to the development of a theory of folding of multilayered elastic materials. It presents the derivation of linearized equations that describe the incremental deformation of materials with memory; these equations are then used to solve for wavelengths of sinusoidal folds in single layers and multilayers. A theory of kink folding in elastic multilayers is introduced based on the mechanism of plastic yielding between layers. The chapters also include analyses of folds in the Carmel Formation at Arches National Monument in Utah; asymmetric folds in interbedded cherts and shales of the Franciscan Complex; and some folds in Tertiary rocks in the Coast Ranges of California. Finally, the most important mechanisms of folding recognized thus far are summarized for multilayered materials with a wide range of properties.
Detailed mapping and analysis of the structural features of rocks enable the 3D geometry of their structures to be reconstructed. The resulting evidence of the stresses and movement patterns which rocks have undergone indicates the processes by which they were formed, and allows evaluation of past deformations of the earth's crust. Written to show how one actually describes, measures and records rock structures such as folds and faults with the emphasis on accuracy, detail and on-going interpretation throughout, this handbook gives students and enthusiasts the practical information and guidance which allows their fieldwork to become vastly more rewarding. "...the author is to be congratulated on producing such an excellent text. The whole range of mapping techniques that an undergraduate student will require are described and the book will still be immense help to post-graduates setting out on their research work. The book represents extremely good value and is thoroughly recommended." --C.R.L. Friend, Mineralogical Magazine
Neither a review of current research into the structural geology of fold and thrust belts, nor an overview of the field, but 14 studies of specific research topics of interest to the contributors. They are, however, grouped into the three main directions of current research: geometry and kinematics, deformation mechanics and mechanisms, and regional structural styles. Annotation copyright by Book News, Inc., Portland, OR
Lavishly illustrated in color, this textbook takes an applied approach to introduce undergraduate students to the basic principles of structural geology. The book provides unique links to industry applications in the upper crust, including petroleum and groundwater geology, which highlight the importance of structural geology in exploration and exploitation of petroleum and water resources. Topics range from faults and fractures forming near the surface to shear zones and folds of the deep crust. Students are engaged through examples and parallels drawn from practical everyday situations, enabling them to connect theory with practice. Containing numerous end-of-chapter problems, e-learning modules, and with stunning field photos and illustrations, this book provides the ultimate learning experience for all students of structural geology.
Since the first edition was published in 1983, this highly-regarded introductory textbook has been used by many generations of students worldwide. It is specifically tailored to the requirements of first or second year geology undergraduates. The third edition has been extensively revised and updated to include many new sections and over 50 new or redrawn illustrations. There are now over 220 illustrations, many incorporating a second colour to highlight essential features. The format has been changed to enhance the visual attractiveness of the book. The tripartite organization of the first and second editions has been modified by combining the purely descriptive or factual aspects of fault ...