You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addi...
This book presents recent results in the following areas: spectral analysis of one-dimensional Schrödinger and Jacobi operators, discrete WKB analysis of solutions of second order difference equations, and applications of functional models of non-selfadjoint operators. Several developments treated appear for the first time in a book. It is addressed to a wide group of specialists working in operator theory or mathematical physics.
Presented in this volume are a number of new results concerning the extension theory and spectral theory of unbounded operators using the recent notions of boundary triplets and boundary relations. This approach relies on linear single-valued and multi-valued maps, isometric in a Krein space sense, and offers a basic framework for recent developments in system theory. Central to the theory are analytic tools such as Weyl functions, including Titchmarsh-Weyl m-functions and Dirichlet-to-Neumann maps. A wide range of topics is considered in this context from the abstract to the applied, including boundary value problems for ordinary and partial differential equations; infinite-dimensional perturbations; local point-interactions; boundary and passive control state/signal systems; extension theory of accretive, sectorial and symmetric operators; and Calkin's abstract boundary conditions. This accessible treatment of recent developments, written by leading researchers, will appeal to a broad range of researchers, students and professionals.
This volume contains solicited articles by speakers at the workshop ranging from expository surveys to original research papers, each of which carefully refereed. They all bear witness to the very rich mathematics that is connected with the study of elementary operators, may it be multivariable spectral theory, the invariant subspace problem or tensor products of C*-algebras.
This book presents a collection of papers on certain aspects of general operator theory related to classes of important operators: singular integral, Toeplitz and Bergman opertors, convolution operators on Lie groups, pseudodifferential operators, etc. The study of these operators arises from integral representations for different classes of functions, enriches pure opertor theory, and is influential and beneficial for important areas of analysis. Particular attention is paid to the fruitful interplay of recent developments of complex and hypercomplex analysis on one side and to operator theory on the other. The majority of papers illustrate this interplay as well as related applications. The papers represent the proceedings of the conference "Operator Theory and Complex and Hypercomplex Analysis", held in Decenber 1994 in Mexico City.
This volume, addressed to researchers and postgraduate students, compiles up-to-date research and expository papers on different aspects of complex analysis, including relations to operator theory and hypercomplex analysis. Subjects include the Schrödinger equation, subelliptic operators, Lie algebras and superalgebras, among others.
Based on the Third International Workshop Conference on Evolution Equations, Control Theory and Biomathematics, held in Hans-sur-Lesse, Belgium. The papers examine important advances in evolution equations related to physical, engineering and biological applications.
This volume contains a selection of papers, from experts in the area, on multidimensional operator theory. Topics considered include the non-commutative case, function theory in the polydisk, hyponormal operators, hyperanalytic functions, and holomorphic deformations of linear differential equations. Operator Theory, Systems Theory and Scattering Theory will be of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
A colloquium on operator theory was held in Vienna, Austria, in March 2004, on the occasion of the retirement of Heinz Langer, a leading expert in operator theory and indefinite inner product spaces. The book contains fifteen refereed articles reporting on recent and original results in various areas of operator theory, all of them related with the work of Heinz Langer. The topics range from abstract spectral theory in Krein spaces to more concrete applications, such as boundary value problems, the study of orthogonal functions, or moment problems. The book closes with a historical survey paper.
This volume, which is dedicated to Heinz Langer, includes biographical material and carefully selected papers. Heinz Langer has made fundamental contributions to operator theory. In particular, he has studied the domains of operator pencils and nonlinear eigenvalue problems, the theory of indefinite inner product spaces, operator theory in Pontryagin and Krein spaces, and applications to mathematical physics. His works include studies on and applications of Schur analysis in the indefinite setting, where the factorization theorems put forward by Krein and Langer for generalized Schur functions, and by Dijksma-Langer-Luger-Shondin, play a key role. The contributions in this volume reflect Heinz Langer’s chief research interests and will appeal to a broad readership whose work involves operator theory.