You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The third edition of the by now classic reference on rigorous analysis of symmetry breaking in both classical and quantum field theories adds new topics of relevance, in particular the effect of dynamical Coulomb delocalization, by which boundary conditions give rise to volume effects and to energy/mass gap in the Goldstone spectrum (plasmon spectrum, Anderson superconductivity, Higgs phenomenon). The book closes with a discussion of the physical meaning of global and local gauge symmetries and their breaking, with attention to the effect of gauge group topology in QCD. From the reviews of the first edition: It is remarkable to see how much material can actually be presented in a rigorous wa...
The new edition of this well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit. A subject index has been added and a number of misprints have been corrected.
This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac-Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C--algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand-Naimark Theorems.For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relati...
Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producingexperimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbativecontrol. As a reaction to these consistency problems one may take the position that they are related to our ignorance ...
Jacques Bros has greatly advanced our present understanding of rigorous quantum field theory through numerous contributions; this book arose from an international symposium held in honour of Bros on the occasion of his 70th birthday. Key topics in this volume include: Analytic structures of Quantum Field Theory (QFT), renormalization group methods, gauge QFT, stability properties and extension of the axiomatic framework, QFT on models of curved spacetimes, QFT on noncommutative Minkowski spacetime.
This book provides a readable account of the foundations of QFT, in particular of the Euclidean formulation with emphasis on the interplay between physical requirements and mathematical structures. The general structures underlying the conventional local (renormalizable) formulation of gauge QFT are discussed also on the basis of simple models. The mechanism of confinement, non-trivial topology and ?-vacua, chiral symmetry breaking and solution of the U(1) problem are clarified through a careful analysis of the Schwinger model, which settles unclear or debated points.
The book provides a non-perturbative approach to the symmetry breaking in the standard model, in this way avoiding the critical issues which affect the standard presentations. The debated empirical meaning of global and local gauge symmetries is clarified. The absence of Goldstone bosons in the Higgs mechanism is non-perturbatively explained by the validity of Gauss laws obeyed by the currents which generate the relatedglobal gauge symmetry. The solution of the U(1) problem and the vacuum structure in quantum chromodynamics (QCD) are obtained without recourse to the problematic semiclassical instanton approximation, by rather exploiting the topology of the gauge group.
This book presents the basic elements of Analytical Mechanics, starting from the physical motivations that favor it with respect to the Newtonian Mechanics in Cartesian coordinates. Rather than presenting Analytical Mechanics mainly as a formal development of Newtonian Mechanics, it highlights its effectiveness due to the following five important achievements: 1) the most economical description of time evolution in terms of the minimal set of coordinates, so that there are no constraint forces in their evolution equations; 2) the form invariance of the evolution equations, which automatically solves the problem of fictitious forces; 3) only one scalar function encodes the formulation of the ...
This book celebrates the life and work of the late Giovanni Morchio (1944–2021). It features scientific and anecdotal contributions written by his former colleagues, co-authors, and students, as well as senior scientists who were active witnesses to the dramatic advances in physics and in mathematics that took place during his 50-year-long career. The volume begins with a biographical introduction, detailing Giovanni Morchio’s life and his role as a physicist, mathematician, teacher, and scientist. The core of the book covers a vast spectrum of ideas, reflecting Dr Morchio’s scientific interests. Each chapter develops a specific topic of modern research, ranging from quantum mechanics ...
The intriguing mechanism of spontaneous symmetry breaking is a powerful innovative idea at the basis of most of the recent developments in theoretical physics, from statistical mechanics to many-body theory to elementary particles theory; for infinitely extended systems a symmetric Hamiltonian can account for non symmetric behaviours, giving rise to non symmetric realizations of a physical system. In the first part of this book, devoted to classical field theory, such a mechanism is explained in terms of the occurrence of disjoint sectors and their stability properties and of an improved version of the Noether theorem. For infinitely extended quantum systems, discussed in the second part, th...