You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This invaluable book presents papers written during the last 40 years by Claude Cohen-Tannoudji and his collaborators on various physical effects which can be observed on atoms interacting with electromagnetic fields. It consists of a personal selection of review papers, lectures given at schools, as well as original experimental and theoretical papers. Emphasis is placed on physical mechanisms and on general approaches (such as the dressed atom approach) having a wide range of applications. Various topics are discussed, such as atoms in intense laser fields, photon correlations, quantum jumps, radiative corrections, laser cooling and trapping, BoseOCoEinstein condensation. In this new edition, about 200-page of new material has been added."
Laser cooling of atoms provides an ideal case study for the application of Lévy statistics in a privileged situation where the statistical model can be derived from first principles. This book demonstrates how the most efficient laser cooling techniques can be simply and quantitatively understood in terms of non-ergodic random processes dominated by a few rare events. Lévy statistics are now recognised as the proper tool for analysing many different problems for which standard Gaussian statistics are inadequate. Laser cooling provides a simple example of how Lévy statistics can yield analytic predictions that can be compared to other theoretical approaches and experimental results. The authors of this book are world leaders in the fields of laser cooling and light-atom interactions, and are renowned for their clear presentation. This book will therefore hold much interest for graduate students and researchers in the fields of atomic physics, quantum optics, and statistical physics.
This is the first detailed account of a new approach to microphysics based on two leading ideas: (i) the explicit dependence of physical laws on scale encountered in quantum physics, is the manifestation of a fundamental principle of nature, scale relativity. This generalizes Einstein's principle of (motion) relativity to scale transformations; (ii) the mathematical achievement of this principle needs the introduction of a nondifferentiable space-time varying with resolution, i.e. characterized by its fractal properties.The author discusses in detail reactualization of the principle of relativity and its application to scale transformations, physical laws which are explicitly scale dependent, and fractals as a new geometric description of space-time.
Covering a number of important subjects in quantum optics, this textbook is an excellent introduction for advanced undergraduate and beginning graduate students, familiarizing readers with the basic concepts and formalism as well as the most recent advances. The first part of the textbook covers the semi-classical approach where matter is quantized, but light is not. It describes significant phenomena in quantum optics, including the principles of lasers. The second part is devoted to the full quantum description of light and its interaction with matter, covering topics such as spontaneous emission, and classical and non-classical states of light. An overview of photon entanglement and applications to quantum information is also given. In the third part, non-linear optics and laser cooling of atoms are presented, where using both approaches allows for a comprehensive description. Each chapter describes basic concepts in detail, and more specific concepts and phenomena are presented in 'complements'.
“The production quality is very high; even the smallest symbols are easily readable, and some papers are reproduced in color. The clarity of the exposition, the wide range of topics, and the logic of the presentation make this a valuable teaching reference. This book is highly recommended for physicists and students working on atoms in intense laser fields, laser cooling and trapping and Bose-Einstein condensation.”Optics & Photonics NewsThis invaluable book presents papers written during the last 40 years by Claude Cohen-Tannoudji and his collaborators on various physical effects which can be observed on atoms interacting with electromagnetic fields. It consists of a personal selection of review papers, lectures given at schools, as well as original experimental and theoretical papers. Emphasis is placed on physical mechanisms and on general approaches (such as the dressed atom approach) having a wide range of applications. Various topics are discussed, such as atoms in intense laser fields, photon correlations, quantum jumps, radiative corrections, laser cooling and trapping, Bose-Einstein condensation. In this new edition, about 200-page of new material has been added.
From the 18th to the 30th August 2003 , a NATO Advanced Study Institute (ASI) was held in Cargèse, Corsica, France. Cargèse is a nice small village situated by the mediterranean sea and the Institut d'Etudes Scientifiques de Cargese provides ? a traditional place to organize Theoretical Physics Summer Schools and Workshops * in a closed and well equiped place. The ASI was an International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems". The main goal of the school was to develop the mutual interaction between Physics and Mathematics concerning statistical properties of classical and quantum dynamical systems. Various experimental and numerical observation...
Risk control and derivative pricing have become of major concern to financial institutions, and there is a real need for adequate statistical tools to measure and anticipate the amplitude of the potential moves of the financial markets. Summarising theoretical developments in the field, this 2003 second edition has been substantially expanded. Additional chapters now cover stochastic processes, Monte-Carlo methods, Black-Scholes theory, the theory of the yield curve, and Minority Game. There are discussions on aspects of data analysis, financial products, non-linear correlations, and herding, feedback and agent based models. This book has become a classic reference for graduate students and researchers working in econophysics and mathematical finance, and for quantitative analysts working on risk management, derivative pricing and quantitative trading strategies.
This book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.
This is a book about laser cooling, a new research field with many potential applications. The authors present an original approach, using the tools and concepts of statistical physics. A new understanding of laser cooling, both intuitive and quantitative, is obtained. The volume also comprises a case study allowing non-Gaussian (Lévy) statistics, a technique being used more frequently in many different fields.
None