You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume opens with a paper by V.P. Havin that presents a comprehensive survey of the work of mathematician S.Ya. Khavinson. It includes a complete bibliography, previously unpublished, of 163 items, and twelve peer-reviewed research and expository papers by leading mathematicians, including the joint paper by Khavinson and T.S. Kuzina. The emphasis is on the usage of tools from functional analysis, potential theory, algebra, and topology.
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.
Finally a self-contained, one volume, graduate-level algebra text that is readable by the average graduate student and flexible enough to accommodate a wide variety of instructors and course contents. The guiding principle throughout is that the material should be presented as general as possible, consistent with good pedagogy. Therefore it stresses clarity rather than brevity and contains an extraordinarily large number of illustrative exercises.
The material presented here can be divided into two parts. The first, sometimes referred to as abstract algebra, is concerned with the general theory of algebraic objects such as groups, rings, and fields, hence, with topics that are also basic for a number of other domains in mathematics. The second centers around Galois theory and its applications. Historically, this theory originated from the problem of studying algebraic equations, a problem that, after various unsuccessful attempts to determine solution formulas in higher degrees, found its complete clarification through the brilliant ideas of E. Galois. The study of algebraic equations has served as a motivating terrain for a large par...
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite ch...
This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
The International Society for Ecological Modelling (ISEM) sponsors conferences, workshops and training courses with the aim of advancing the development of ecological and environmental modelling. The 3rd International Conference on the state-of-the-art in ecological modelling was sponsored by the ISEM in cooperation with the National Park Service Water Resources Laboratory and hosted by the Natural Resource Ecology Laboratory at Colorado State University. Its theme was the application of ecological modelling to environmental management and this book contains the full texts of the three invited papers presented in the five general sessions, plus the final summaries and syntheses of the topics covered during those sessions.
Constraint satisfaction is a simple but powerful tool. Constraints identify the impossible and reduce the realm of possibilities to effectively focus on the possible, allowing for a natural declarative formulation of what must be satisfied, without expressing how. The field of constraint reasoning has matured over the last three decades with contributions from a diverse community of researchers in artificial intelligence, databases and programming languages, operations research, management science, and applied mathematics. Today, constraint problems are used to model cognitive tasks in vision, language comprehension, default reasoning, diagnosis, scheduling, temporal and spatial reasoning. I...
Offering the insights of L.S. Pontryagin, one of the foremost thinkers in modern mathematics, the second volume in this four-volume set examines the nature and processes that make up topological groups. Already hailed as the leading work in this subject for its abundance of examples and its thorough explanations, the text is arranged so that readers can follow the material either sequentially or schematically. Stand-alone chapters cover such topics as topological division rings, linear representations of compact topological groups, and the concept of a lie group.
This volume is a tribute to Maxim Kontsevich, one of the most original and influential mathematicians of our time. Maxim’s vision has inspired major developments in many areas of mathematics, ranging all the way from probability theory to motives over finite fields, and has brought forth a paradigm shift at the interface of modern geometry and mathematical physics. Many of his papers have opened completely new directions of research and led to the solutions of many classical problems. This book collects papers by leading experts currently engaged in research on topics close to Maxim’s heart. Contributors: S. Donaldson A. Goncharov D. Kaledin M. Kapranov A. Kapustin L. Katzarkov A. Noll P. Pandit S. Pimenov J. Ren P. Seidel C. Simpson Y. Soibelman R. Thorngren