You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This report presents an update of the experimental achievements published in the review “State- of-the-Art of High-Power Gyro-Devices and Free Electron Masers”, Journal of Infrared, Millimeter, and Terahertz Waves, 41, No. 1, pp 1-140 (2020) and in the KIT Scientific Report 7761 (2021), related to the development of gyro-devices (Tables 2-34). Emphasis is on high-power gyrotron oscillators for long-pulse or continuous wave (CW) operation and pulsed gyrotrons for any applications.
This report presents an update of the experimental achievements published in the review “State- of-the-Art of High-Power Gyro-Devices and Free Electron Masers”, Journal of Infrared, Millime-ter, and Terahertz Waves, 41, No. 1, pp 1-140 (2020) related to the development of gyro-devices (Tables 2-34). Emphasis is on high-power gyrotron oscillators for long-pulse or continuous wave (CW) operation and pulsed gyrotrons for any applications.
In this work, a novel measurement system for the analysis of the gyrotron RF output spectrum was developed. It enables unprecedented time dependent measurements within a large bandwidth, dynamic range and unambiguous RF indication in the entire D-Band (110-170 GHz). Special attention was given to the investigation of parasitic RF oscillations, and the analysis of the interplay of thermal cavity expansion and ionization-based space charge neutralization at the start of long RF pulses.
The physical design of cavity and magnetron injection gun (MIG) for a realistic, DEMO-compatible, coaxial-cavity 238 GHz 2 MW CW fusion gyrotron is developed in this work, having auxiliary frequencies at 170 GHz and 204 GHz. Novel systematic approaches towards multi-frequency mode selection, magnet requirements, and MIG design are presented. Mode deterioration and voltage depression variation due to insert misalignment versus cavity wall and/or versus electron beam are studied.
This proceedings volume, the sixteenth in a biannual series, presents a snapshot of the state of current research worldwide on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH) and related technologies. The papers address the physics, both theory and experiment, of ECE and ECRH. The technologies of high power millimeter-wave sources — gyrotrons — and transmission lines and launchers are included. The focus is on physics and technology relevant to the research and development of nuclear fusion.
This proceedings volume, the sixteenth in a biannual series, presents a snapshot of the state of current research worldwide on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH) and related technologies. The papers address the physics, both theory and experiment, of ECE and ECRH. The technologies of high power millimeter-wave sources ? gyrotrons ? and transmission lines and launchers are included. The focus is on physics and technology relevant to the research and development of nuclear fusion.
Max Frisch, with his countryman Friederich Diirrenmatt, shares the place of eminence in contemporary Swiss literature. Indeed, he ranks high among the recent leading writers in the German language. But, although several of his works— novels and plays—have been translated into English, he remains little known in America. In this collection of essays an international group of scholars provides a fresh introduction to this noted author. The three leading essays review Frisch's work in the forms he has used most extensively—drama, narrative fiction, and the personal diary. The remaining nine essays focus on specific works or topics. Among the works examined are I'm Not Stiller, A Wilderness of Mirrors, Wilhelm Tell, and the recent Man in the Holocene. Among the topics are Frisch's use of language and images, his treatment of women, and the element of parody. Concluding the volume is the most complete bibliography on Frisch to appear in English to date.
These proceedings present the latest results in electron cyclotron emission, heating and current drive, with an emphasis on the physics and technology of Electron Cyclotron Emission, Electron Cyclotron Heating and Electron Cyclotron Current Drive applied to magnetic fusion research. The field is a key element in the development of fusion power and the ITER project now under construction.
These proceedings present the latest results in electron cyclotron emission, heating and current drive, with an emphasis on the physics and technology of Electron Cyclotron Emission, Electron Cyclotron Heating and Electron Cyclotron Current Drive applied to magnetic fusion research. The field is a key element in the development of fusion power and the ITER project now under construction.