You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A NATO Advanced Research Workshop on Strongly Coupled Plasma Physics was held on the Santa Cruz Campus of the University of California, from August 4 through August 9, 1986. It was attended by 80 participants from 13 countries, 45 of whom were invited speakers. The present volume contains the texts of the invited talks and many of the contributed papers. The relative length of each text is roughly proportional to the length of the workshop presentation. The aim of the workshop was to bring together leading researchers from a number of related disciplines in which strong Coulomb interactions play a dominant role. Compared to the 1977 meeting in Orleans-la-Source, France and the 1982 meeting i...
The surface of solids had long been considered simply the external boundary which determined the outside appearance of the solids but had no intrinsic character of its own. The concept that surfaces have specific properties and are the first and foremost means of communication between individual things and the rest of the universe is fairly new, coming into prominence only in the early sixties. This new concept of surface properties was the result of a vast accumulation of knowledge due to recent development of research in this area. This breakthrough of surface science resulted from the combined action of four factors: (i) control of surface sample prep aration, (ii) control of the surface'...
Fractals and disordered systems have recently become the focus of intense interest in research. This book discusses in great detail the effects of disorder on mesoscopic scales (fractures, aggregates, colloids, surfaces and interfaces, glasses, and polymers) and presents tools to describe them in mathematical language. A substantial part is devoted to the development of scaling theories based on fractal concepts. In 10 chapters written by leading experts in the field, including E. Stanley and B. Mandelbrot, the reader is introduced to basic concepts and techniques in disordered systems and is lead to the forefront of current research. In each chapter the connection between theory and experiment is emphasized, and a special chapter entitled "Fractals and Experiments" presents experimental studies of fractal systems in the laboratory. The book is written pedagogically. It can be used as a textbook for graduate students, by university teachers to prepare courses and seminars, and by active scientists who want to become familiar with a fascinating new field.
This book provides a detailed overview of high entropy materials and alloys, discussing their structure, the processing of bulk and nanostructured alloys as well as their mechanical and functional properties and applications. It covers the exponential growth in research which has occurred over the last decade, discussing novel processing techniques, estimation of mechanical, functional and physical properties, and utility of these novel materials for various applications. Given the expanding scope of HEAs in ceramics, polymers, thin films and coating, this book will be of interest to material scientists and engineers alike.
This book is a compilation of the review papers, expositions and some of the technical works of Leo Kadanoff, a theoretical physicist. The objective is to put together a group of not-too-technical writing in which he discusses some issues in condensed matter physics, hydrodynamics, applied mathematics and national policy.This expanded edition is divided into five sections. The first section contains review papers on hydrodynamics, condensed matter physics and field theory. Next is a selection of papers on scaling and universality, particularly as applied to phase changes. A change of pace is provided by a series of papers on the critical analysis of simulation models of urban economic and social development. The book concludes with a series of recent papers on complex patterns. Each major section has an introduction designed to tie the work together and to provide perspective on the subject matter.
The book discusses, based on a series of lectures given by the authors at the Universidad Autonoma of Madrid discusses the relation between cosmology and particle physics at a pedagogical level. The topics covered contain much valuable introductory materials. Very useful as a text for graduate students in this field.
This is the first available volume to consolidate prominent topics in the emerging field of nanostructured systems. Recent technological advancements have led to a new era of nanostructure physics, allowing for the fabrication of nanostructures whose behavior is dominated by quantum interference effects. This new capability has enthused the experimentalist and theorist alike. Innumerable possibilities have now opened up for physical exploration and device technology on the nanoscale. This book, with contributions from five pioneering researchers, will allow the expert and novice alike to explore a fascinating new field.Provides a state-of-the-art review of quantum-scale artificially nanostructured electronic systemsIncludes contributions by world-known experts in the fieldOpens the field to the non-expert with a concise introductionFeatures discussions of:Low-dimensional condensed matter physicsProperties of nanostructured, ultrasmall electronic systemsMesoscopic physics and quantum transportPhysics of 2D electronic systems
Rarely do so many leading physicists attend one symposium. No less than nine Nobel laureates and some 40 other top researchers gathered for this symposium and this book contains the material presented in invited talks as well as the posters. The 34 papers are organised into three groups corresponding to various aspects of low dimensional physics of solids.
This book is a compilation of the review papers, expositions and some of the technical works of Leo Kadanoff, a theoretical physicist. The objective is to put together a group of not-too-technical writing in which he discusses some issues in condensed matter physics, hydrodynamics, applied mathematics and national policy.The volume is divided into four sections. The first section contains review papers on hydrodynamics, condensed matter physics and field theory. Next is a selection of papers on scaling and universality, particularly as applied to phase changes. A change of pace is provided by a series of papers on the critical analysis of simulation models of urban economic and social development. The book concludes with a series of recent papers on turbulence and chaos. Each major section has an introduction designed to tie the work together and to provide perspective on the subject matter.
In its original form, this widely acclaimed primer on the fundamentals of quantized semiconductor structures was published as an introductory chapter in Raymond Dingle's edited volume (24) of Semiconductors and Semimetals. Having already been praised by reviewers for its excellent coverage, this material is now available in an updated and expanded "student edition." This work promises to become a standard reference in the field. It covers the basics of electronic states as well as the fundamentals of optical interactions and quantum transport in two-dimensional quantized systems. This revised student edition also includes entirely new sections discussing applications and one-dimensional and zero-dimensional systems. - Available for the first time in a new, expanded version - Provides a concise introduction to the fundamentals and fascinating applications of quantized semiconductor structures