You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applicatio...
This book constitutes the refereed proceedings of the First International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2007, emanated from the joint edition of the 4th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2007 and the 6th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2007, held in Ischia Italy, May/June 2007.
This book constitutes the refereed proceedings of the 4th International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2013, held in Schloss Seggau near Graz, Austria, in June 2013. The 42 revised full papers presented were carefully reviewed and selected 69 submissions. The papers are organized in topical sections on image denoising and restoration, image enhancement and texture synthesis, optical flow and 3D reconstruction, scale space and partial differential equations, image and shape analysis, and segmentation.
This book constitutes the refereed proceedings of the 5th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2015, held in Lège-Cap Ferret, France, in May 2015. The 56 revised full papers presented were carefully reviewed and selected from 83 submissions. The papers are organized in the following topical sections: scale space and partial differential equation methods; denoising, restoration and reconstruction, segmentation and partitioning; flow, motion and registration; photography, texture and color processing; shape, surface and 3D problems; and optimization theory and methods in imaging.
Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.
A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”when...
Mathematical methods has been a dominant research path in computational vision leading to a number of areas like ?ltering, segmentation, motion analysis and stereo reconstruction. Within such a branch visual perception tasks can either be addressed through the introduction of application-driven geometric ?ows or through the minimization of problem-driven cost functions where their lowest potential corresponds to image understanding. The 3rd IEEE Workshop on Variational, Geometric and Level Set Methods focused on these novel mathematical techniques and their applications to c- puter vision problems. To this end, from a substantial number of submissions, 30 high-quality papers were selected af...
This book constitutes the refereed proceedings of the 5th International Conference on Geometric Modeling and Processing, GMP 2008, held in Hangzhou, China, in April 2008. The 34 revised full papers and 17 revised short papers presented were carefully reviewed and selected from a total of 113 submissions. The papers cover a wide spectrum in the area of geometric modeling and processing and address topics such as curves and surfaces, digital geometry processing, geometric feature modeling and recognition, geometric constraint solving, geometric optimization, multiresolution modeling, and applications in computer vision, image processing, scientific visualization, robotics and reverse engineering.
This volume constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Curves and Surfaces, held in Paris, France, in June 2014. The conference had the overall theme: "Representation and Approximation of Curves and Surfaces and Applications". The 32 revised full papers presented were carefully reviewed and selected from 39 submissions. The scope of the conference was on following topics: approximation theory, computer-aided geometric design, computer graphics and visualization, computational geometry and topology, geometry processing, image and signal processing, interpolation and smoothing, mesh generation, finite elements and splines, scattered data processing and learning theory, sparse and high-dimensional approximation, subdivision, wavelets and multi-resolution method.
With a lot of recent developments in the field, this much-needed book has come at just the right time. It covers a variety of topics related to preserving and enhancing shape information at a geometric level. The contributors also cover subjects that are relevant to effectively capturing the structure of a shape by identifying relevant shape components and their mutual relationships.