You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The three-volume set LNCS 8149, 8150, and 8151 constitutes the refereed proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2013, held in Nagoya, Japan, in September 2013. Based on rigorous peer reviews, the program committee carefully selected 262 revised papers from 789 submissions for presentation in three volumes. The 95 papers included in the first volume have been organized in the following topical sections: physiological modeling and computer-assisted intervention; imaging, reconstruction, and enhancement; registration; machine learning, statistical modeling, and atlases; computer-aided diagnosis and imaging biomarkers; intraoperative guidance and robotics; microscope, optical imaging, and histology; cardiology, vasculatures and tubular structures; brain imaging and basic techniques; diffusion MRI; and brain segmentation and atlases.
This reference text presents the usage of artificial intelligence in healthcare and discusses the challenges and solutions of using advanced techniques like wearable technologies and image processing in the sector. Features: Focuses on the use of artificial intelligence (AI) in healthcare with issues, applications, and prospects Presents the application of artificial intelligence in medical imaging, fractionalization of early lung tumour detection using a low intricacy approach, etc Discusses an artificial intelligence perspective on wearable technology Analyses cardiac dynamics and assessment of arrhythmia by classifying heartbeat using electrocardiogram (ECG) Elaborates machine learning models for early diagnosis of depressive mental affliction This book serves as a reference for students and researchers analyzing healthcare data. It can also be used by graduate and post graduate students as an elective course.
The three-volume set LNCS 6891, 6892 and 6893 constitutes the refereed proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2011, held in Toronto, Canada, in September 2011. Based on rigorous peer reviews, the program committee carefully selected 251 revised papers from 819 submissions for presentation in three volumes. The third volume includes 82 papers organized in topical sections on computer-aided diagnosis and machine learning, and segmentation.
After years of neurohype and a neuroskeptic backlash, this book provides a systematic analysis of the contributions to self-understanding cognitive neuroscience (CNS) and philosophy can make. The stories of five people in search of self-understanding serve as touchstone throughout the book. Their identities are tied up with what they love. The book provides in-depth analyses of CNS of love and CNS of self-reflection. It critically discusses philosophers who focus on the relation between love, self-understanding and selfhood, such as Harry Frankfurt, Susan Wolf, Charles Taylor and Søren Kierkegaard. It also builds an argument about CNS’ contributions to self-understanding more broadly, and how different these are from philosophy’s contributions. The book develops conceptual review as a philosophical method for improving the validity and comparability of CNS studies. It integrates CNS insights into its philosophical view on love and selfhood where applicable. This book thus argues and exemplifies that philosophy and CNS can work together.
Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural ...
The three-volume set LNCS 8673, 8674, and 8675 constitutes the refereed proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014, held in Boston, MA, USA, in September 2014. Based on rigorous peer reviews, the program committee carefully selected 253 revised papers from 862 submissions for presentation in three volumes. The 53 papers included in the third volume have been organized in the following topical sections: shape and population analysis; brain; diffusion MRI; and machine learning.
Get a step ahead of your competitors with insights from over 30 Kaggle Masters and Grandmasters. Discover tips, tricks, and best practices for competing effectively on Kaggle and becoming a better data scientist. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Learn how Kaggle works and how to make the most of competitions from over 30 expert Kagglers Sharpen your modeling skills with ensembling, feature engineering, adversarial validation and AutoML A concise collection of smart data handling techniques for modeling and parameter tuning Book DescriptionMillions of data enthusiasts from around the world compete on Kaggle, the most famous data scienc...
The three-volume set LNCS 10433, 10434, and 10435 constitutes the refereed proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, held inQuebec City, Canada, in September 2017. The 255 revised full papers presented were carefully reviewed and selected from 800 submissions in a two-phase review process. The papers have been organized in the following topical sections: Part I: atlas and surface-based techniques; shape and patch-based techniques; registration techniques, functional imaging, connectivity, and brain parcellation; diffusion magnetic resonance imaging (dMRI) and tensor/fiber processing; and image segmentation and modelling. Part II: optical imaging; airway and vessel analysis; motion and cardiac analysis; tumor processing; planning and simulation for medical interventions; interventional imaging and navigation; and medical image computing. Part III: feature extraction and classification techniques; and machine learning in medical image computing.