You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents modern algebra from first principles and is accessible to undergraduates or graduates. It combines standard materials and necessary algebraic manipulations with general concepts that clarify meaning and importance. This conceptual approach to algebra starts with a description of algebraic structures by means of axioms chosen to suit the examples, for instance, axioms for groups, rings, fields, lattices, and vector spaces. This axiomatic approach—emphasized by Hilbert and developed in Germany by Noether, Artin, Van der Waerden, et al., in the 1920s—was popularized for the graduate level in the 1940s and 1950s to some degree by the authors' publication of A Survey of Modern Algebra. The present book presents the developments from that time to the first printing of this book. This third edition includes corrections made by the authors.
None
A complete revision of the first edition this book. The author has added a chapter on turbulence, and has expanded the work on paradoxes and modeling. W.M. Elsasser said of the first edition, "A book such as this, concentrating as it does on the boundaries of fundamental progress, should be indispensable to all those engaged in hydrodynamical research who are concerned with the type of generalization that so often in the past has led to fundamental progress." Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
None
The present volume of reprints are what I consider to be my most interesting and influential papers on algebra and topology. To tie them together, and to place them in context, I have supplemented them by a series of brief essays sketching their historieal background (as I see it). In addition to these I have listed some subsequent papers by others which have further developed some of my key ideas. The papers on universal algebra, lattice theory, and general topology collected in the present volume concern ideas which have become familiar to all working mathematicians. It may be helpful to make them readily accessible in one volume. I have tried in the introduction to each part to state the ...
This unique collection contains extensive and in-depth interviews with mathematicians who have shaped the field of mathematics in the twentieth century. Collected by two mathematicians respected in the community for their skill in communicating mathematical topics to a broader audience, the book is also rich with photographs and includes an introdu
First-order differentail equations; Second-order linear equations; Linear equations with constant coefficients; Power series solutions; Plane autonomous systems; Existence and uniqueness theorems; Approximate solutions; Regular singular points.
From the reviews: "About 30 years ago, when I was a student, the first book on combinatorial optimization came out referred to as "the Lawler" simply. I think that now, with this volume Springer has landed a coup: "The Schrijver". The box is offered for less than 90.- EURO, which to my opinion is one of the best deals after the introduction of this currency." OR-Spectrum
This book explores facets of Otto Neugebauer's career, his impact on the history and practice of mathematics, and the ways in which his legacy has been preserved or transformed in recent decades, looking ahead to the directions in which the study of the history of science will head in the twenty-first century. Neugebauer, more than any other scholar of recent times, shaped the way we perceive premodern science. Through his scholarship and influence on students and collaborators, he inculcated both an approach to historical research on ancient and medieval mathematics and astronomy through precise mathematical and philological study of texts, and a vision of these sciences as systems of knowledge and method that spread outward from the ancient Near Eastern civilizations, crossing cultural boundaries and circulating over a tremendous geographical expanse of the Old World from the Atlantic to India.