You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
View the abstract.
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
View the abstract.
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates
View the abstract.
The Białowieża workshops on Geometric Methods in Physics, taking place in the unique environment of the Białowieża natural forest in Poland, are among the important meetings in the field. Every year some 80 to 100 participants both from mathematics and physics join to discuss new developments and to interchange ideas. The current volume was produced on the occasion of the XXXI meeting in 2012. For the first time the workshop was followed by a School on Geometry and Physics, which consisted of advanced lectures for graduate students and young researchers. Selected speakers of the workshop were asked to contribute, and additional review articles were added. The selection shows that despite its now long tradition the workshop remains always at the cutting edge of ongoing research. The XXXI workshop had as a special topic the works of the late Boris Vasilievich Fedosov (1938–2011) who is best known for a simple and very natural construction of a deformation quantization for any symplectic manifold, and for his contributions to index theory.
In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.
This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwit...
View the abstract.