You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today’s actual testing situations. To reflect the growing use of stati...
In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one. Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner’s guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software. Highlights of the Second ...
By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.
This edited volume features cutting-edge topics from the leading researchers in the areas of latent variable modeling. Content highlights include coverage of approaches dealing with missing values, semi-parametric estimation, robust analysis, hierarchical data, factor scores, multi-group analysis, and model testing. New methodological topics are illustrated with real applications. The material presented brings together two traditions: psychometrics and structural equation modeling. Latent Variable and Latent Structure Models' thought-provoking chapters from the leading researchers in the area will help to stimulate ideas for further research for many years to come. This volume will be of interest to researchers and practitioners from a wide variety of disciplines, including biology, business, economics, education, medicine, psychology, sociology, and other social and behavioral sciences. A working knowledge of basic multivariate statistics and measurement theory is assumed.
This comprehensive text introduces readers to the most commonly used multivariate techniques at an introductory, non-technical level. By focusing on the fundamentals, readers are better prepared for more advanced applied pursuits, particularly on topics that are most critical to the behavioral, social, and educational sciences. Analogies betwe
Multivariate statistics refer to an assortment of statistical methods that have been developed to handle situations in which multiple variables or measures are involved. Any analysis of more than two variables or measures can loosely be considered a multivariate statistical analysis. An introductory text for students learning multivariate statistical methods for the first time, this book keeps mathematical details to a minimum while conveying the basic principles. One of the principal strategies used throughout the book--in addition to the presentation of actual data analyses--is pointing out the analogy between a common univariate statistical technique and the corresponding multivariate met...
Featuring contributions from some of the leading researchers in the field of SEM, most chapters are written by the author(s) who originally proposed the technique and/or contributed substantially to its development. Content highlights include latent variable mixture modeling, multilevel modeling, interaction modeling, models for dealing with nonstandard and noncompliance samples, the latest on the analysis of growth curve and longitudinal data, specification searches, item parceling, and equivalent models. This volume will appeal to educators, psychologists, biologists, business professionals, medical researchers, and other social and health scientists. It is assumed that the reader has mastered the equivalent of a graduate-level multivariate statistics course that included coverage of introductory SEM techniques.
This volume introduces the latest popular methods for conducting business research. The goal of each chapter author--a leading authority in a particular subject area--is to provide an understanding of each method with a minimum of mathematical derivations. The chapters are organized within three general interrelated topics--Measurement, Decision Analysis, and Modeling. The chapters on measurement discuss generalizability theory, latent trait and latent class models, and multi-faceted Rasch modeling. The chapters on decision analysis feature applied location theory models, data envelopment analysis, and heuristic search procedures. The chapters on modeling examine exploratory and confirmatory factor analysis, dynamic factor analysis, partial least squares and structural equation modeling, multilevel data analysis, modeling of longitudinal data by latent growth curve methods and structures, and configural models of longitudinal categorical data.
Basic Statistics provides an accessible and comprehensive introduction to statistics using the free, state-of-the-art, powerful software program R. This book is designed to both introduce students to key concepts in statistics and to provide simple instructions for using R. This concise book: Teaches essential concepts in statistics, assuming little background knowledge on the part of the reader Introduces students to R with as few sub-commands as possible for ease of use Provides practical examples from the educational, behavioral, and social sciences With clear explanations of statistical processes and step-by-step commands in R, Basic Statistics will appeal to students and professionals across the social and behavioral sciences.
Over the past several decades, item response theory (IRT) and item response modeling (IRM) have become increasingly popular in the behavioral, educational, social, business, marketing, clinical, and health sciences. In this book, Raykov and Marcoulides begin with a nontraditional approach to IRT and IRM that is based on their connections to classical test theory, (nonlinear) factor analysis, generalized linear modeling, and logistic regression. Application-oriented discussions follow next. These cover the one-, two-, and three-parameter logistic models, polytomous item response models (with nominal or ordinal items), item and test information functions, instrument construction and development, hybrid models, differential item functioning, and an introduction to multidimensional IRT and IRM. The pertinent analytic and modeling capabilities of Stata are thoroughly discussed, highlighted, and illustrated on empirical examples from behavioral and social research.