You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantum Chromodynamics (QCD) is the most up-to-date theory of the strong interaction. Its predictions have been verified experimentally, and it is a cornerstone of the Standard Model of particle physics. However, standard perturbative procedures fail if applied to low-energy QCD. Even the discovery of the Higgs Boson will not solve the problem of masses originating from the non-perturbative behavior of QCD.This book presents a new method, the introduction of the ‘mass gap’, first suggested by Arthur Jaffe and Edward Witten at the turn of the millennium. It attempts to show that, to explain the mass-spectrum of QCD, one needs the mass scale parameter (the mass gap) instead of other massiv...
Vladimir Naumovich Gribov was one of the most outstanding theoretical physicists, a key figure in the development of modern elementary particle physics. His insights into the physics of quantum anomalies and the origin of classical solutions (instantons), the notion of parton systems and their evolution in soft and hard hadron interactions, the first theory of neutrino oscillations and conceptual problems of quantization of non-Abelian fields uncovered by him, have left a lasting impact on the theoretical physics of the 21st century.Gribov-80 — the fourth in a series of memorial workshops for V N Gribov — was organized on the occasion of his 80th birthday in May 2010, at the Abdus Salam International Centre for Theoretical Physics. The workshop paid tribute to Gribov's great achievements and brought close colleagues, younger researchers and leading experts together to display the new angles of the Gribov heritage at the new energy frontier opened up by the Large Hadron Collider.The book is a collection of the presentations made at the workshop.
Vladimir Naumovich Gribov is one of the creators of modern theoretical physics. The concepts and methods that Gribov has developed in the second half of the 20th century became cornerstones of the physics of high energy hadron interactions (relativistic theory of complex angular momenta, a notion of the vacuum pole — Pomeron, effective reggeon field theory), condensed matter physics (critical phenomena), neutrino oscillations, and nuclear physics.His unmatched insights into the nature of the quantum field theory helped to elucidate, in particular, the origin of classical solutions (instantons), quantum anomalies, specific problems in quantization of non-Abelian fields (Gribov anomalies, Gr...
What is the mystery of the crop circles? Are they manmade or supernatural? Today the majestic crop formations grace the very same pastures of southern England that in the past were the haunts of fairies, hobgoblins, and mysterious lights. Here, too, are some of Britain's most spectacular prehistoric landscapes: Stonehenge, Avebury, and Silbury Hill all act as ominous backdrops to the crop circle phenomenon. Did our ancestors know something about this beguiling, enchanting landscape that we are only now waking up to for the first time? Is there a higher intelligence responsible for such creations, and if so, who are they and what are they trying to tell us? Bizarrely, the answer might lie not here on earth, but 37,000 light years away in the constellation of Cygnus, the Northern Cross, where lurks a star perhaps responsible not only for the foundation of the world's earliest stone monuments but for the emergence of humanity itself.
Vladimir Naumovich Gribov is one of the creators of modern theoretical physics. The concepts and methods that Gribov has developed in the second half of the 20th century became cornerstones of the physics of high energy hadron interactions (relativistic theory of complex angular momenta, a notion of the vacuum pole — Pomeron, effective reggeon field theory), condensed matter physics (critical phenomena), neutrino oscillations, and nuclear physics.His unmatched insights into the nature of the quantum field theory helped to elucidate, in particular, the origin of classical solutions (instantons), quantum anomalies, specific problems in quantization of non-Abelian fields (Gribov anomalies, Gr...
This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics. Conceived nearly 150 years ago by Maxwell, Boltzmann and Gibbs, the BG theory, one of the greatest monuments of contemporary physics, exhibits many impressive successes in physics, chemistry, mathematics, and computational sciences. Presently, several thousands of publications by scientists around the world have been dedicated to its nonextensive generalization. A variety of applications have emerged in complex systems and its mathematical grounding is by now well advanced. Since the first edition release thirteen years ago, there has been a vast amount of new resu...
Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved. It discusses a broad spectrum of experimental and theoretical activity in particle physics, from the searches for the Higgs boson and physics beyond the Standard Model to studies of quantum chromodynamics, the B-physics sector, and the properties of dense hadronic matter in heavy-ion collisions. Covering the topics in a pedagogical manner, the book introduces the theoretical and phenomenological framework of hadron collisions and presents the current theoretical models of frontier physics. It of...
The aim of this book is to offer to the next generation of young researchers a broad and largely self-contained introduction to the physics of heavy ion collisions and the quark-gluon plasma, providing material beyond that normally found in the available textbooks. For each of the main aspects - QCD thermodynamics and global features of the QGP, collision hydrodynamics, electromagnetic probes, jet and quarkonium production, color glass condensate, and the gravity connection - the present volume provides extensive and pedagogical lectures, surveying the present status of both theory and experiment. A particular feature of this volume is that all lectures have been written with the active assistance of selected students present at the course in order to ensure the adequate level and coverage for the intended readership.
This new volume, I/23, of the Landolt-Börnstein Data Collection series continues a tradition inaugurated by the late Editor-in-Chief, Professor Werner Martienssen, to provide in the style of an encyclopedia a summary of the results and ideas of Relativistic Heavy Ion Physics. Formerly, the Landolt-Börnstein series was mostly known as a compilation of numerical data and functional relations, but it was felt that the more comprehensive summary undertaken here should meet an urgent purpose. Volume I/23 reports on the present state of theoretical and experimental knowledge in the field of Relativistic Heavy Ion Physics. What is meant by this rather technical terminology is the study of strongl...