You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Explores the complex physico-chemical processes involved in active volcanism and dynamic magmatism Understanding the magmatic processes responsible for the chemical and textural signatures of volcanic products and igneous rocks is crucial for monitoring, forecasting, and mitigating the impacts of volcanic activity. Dynamic Magma Evolution is a compilation of recent geochemical, petrological, physical, and thermodynamic studies. It combines field research, experimental results, theoretical approaches, unconventional and novel techniques, and computational modeling to present the latest developments in the field. Volume highlights include: Crystallization and degassing processes in magmatic en...
Our understanding of the physical and chemical processes that regulate the evolution of magmatic systems has improved tremendously since the foundations were laid down 100 years ago by Bowen. The concept of crustal magma chambers has progressively evolved from molten-rock vats to thermally, chemically and physically heterogeneous reservoirs that are kept active by the periodic injection of magma. This new model, while more complex, provides a better framework to interpret volcanic activity and decipher the information contained in intrusive and extrusive rocks. Igneous and metamorphic petrology, geochemistry, geochronology, and numerical modelling, all contributed towards this new picture of crustal magmatic systems. This book provides an overview of the wide range of approaches that can nowadays be used to understand the chemical, physical and temporal evolution of magmatic and volcanic systems.
Quantifying the timescales of current geological processes is critical for constraining the physical mechanisms operating on the Earth today. Since the Earth’s origin 4.55 billion years ago magmatic processes have continued to shape the Earth, producing the major reservoirs that exist today (core, mantle, crust, oceans and atmosphere) and promoting their continued evolution. But key questions remain. When did the core form and how quickly? How are magmas produced in the mantle, and how rapidly do they travel towards the surface? How long do magmas reside in the crust, differentiating and interacting with the host rocks to yield the diverse set of igneous rocks we see today? How fast are vo...
2017 has been an exciting year for our innovative open access journal Frontiers in Earth Science: many new articles have been published and are now indexed in Web of Science (ESCI), new sections have opened for submissions (including Solid Earth Geophysics), and our Editorial Board has been successfully leading the peer review process and providing comprehensive reviews to our authors. Have a look at our archive to read about the feeding habits of dinosaurs, human influence on in the African humid period, volcanic hazard models, or how glaciers flowing into the ocean surrounding Greenland have changed over time! Launched at the end of 2013, our Journal consists of several specialties whose n...
This book highlights major problems in the statistical analysis of compositions that have been known for over a century, as well as the corresponding solutions that have been put forward by specialists over the past 30 years. The basic assumptions of normality or multi-normality are pointed out and methods to test and achieve them are also covered. The conventional major and trace element geochemistry and modeling equations are discussed, and are followed by a more sophisticated multidimensional approach to data handling. The book’s main focus is on the use of statistical techniques to facilitate data interpretation. It also highlights the classification (or nomenclature) and tectonic discrimination aspects for both igneous and sedimentary rocks. The book concludes by discussing computer programs that are helping pave the way from geochemistry to geochemometrics. Written by a leading expert in the area of geochemistry, it offers a valuable guide for students and professionals in the area.
Melt inclusions provide a unique record of the physical and chemical processes operating in active magma chambers associated with volcanic systems. This book includes a summary of modern techniques used to study and interpret melt inclusions in volcanic rocks, as well as descriptive studies of specific volcanoes. These various studies document the enormous potential for melt inclusions to provide a window into the dynamics of active magma chambers.'Melt Inclusions in Volcanic Systems' gives the most up-to-date summary of research on the application of melt inclusions in studies of active and fossil volcanic systems, as well as suggestions for future research in this area.
From ski towns to national parks, fresh fruit to environmental lawsuits, the Sierra Nevada has changed the way Americans live. Whether and where there was gold to be mined redefined land, mineral, and water laws. Where rain falls (and where it doesn't) determines whose fruit grows on trees and whose appears on slot machines. All this emerges from the geology of the range and how it changed history, and in so doing, changed the country. The Mountains That Remade America combines geology with history to show how the particular forces and conditions that created the Sierra Nevada have effected broad outcomes and influenced daily life in the United States in the past and how they continue to do so today. Drawing connections between events in historical geology and contemporary society, Craig H. Jones makes geological science accessible and shows the vast impact this mountain range has had on the American West.
The impact of natural disasters has become an important and ever-growing preoccupation for modern societies. Volcanic eruptions are particularly feared due to their devastating local, regional or global effects. Relevant scientific expertise that aims to evaluate the hazards of volcanic activity and monitor and predict eruptions has progressively developed since the start of the 20th century. The further development of fundamental knowledge and technological advances over this period have allowed scientific capabilities in this field to evolve. Hazards and Monitoring of Volcanic Activity groups a number of available techniques and approaches to render them easily accessible to teachers, researchers and students. This volume reviews the different monitoring methods. It first considers fluids and solid products, approaches that provide valuable information on pre-eruptive processes and eruption dynamics. It also focuses on the description of geophysical monitoring methods under development.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.