You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The main topics in this volume reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered is the set of Navier-Stokes equations and their solutions.
The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations read...
This volume contains a collection of papers on graph theory, with the common theme that all the graph theoretical problems addressed are approached from a geometrical, rather than an abstract point of view. This is no accident; the editor selected these papers not as a comprehensive literature revie
The AMS-IMS-SIAM Summer Research Conference on Integer Points in Polyhedra took place in Snowbird (UT). This proceedings volume contains original research and survey articles stemming from that event. Topics covered include commutative algebra, optimization, discrete geometry, statistics, representation theory, and symplectic geometry. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields.
This book contains contributions from the participants of an International Conference on Complex Analysis and Dynamical Systems. The papers collected here are devoted to various topics in complex analysis and dynamical systems, ranging from properties of holomorphic mappings to attractors in hyperbolic spaces. Overall, these selections provide an overview of activity in analysis at the outset of the twenty-first century. The book is suitable for graduate students and researchers in complex analysis and related problems of dynamics. With this volume, the Israel Mathematical Conference Proceedings are now published as a subseries of the AMS Contemporary Mathematics series.
"Based on the proceedings of the International Conference on Reaction Diffusion Systems held recently at the University of Trieste, Italy. Presents new research papers and state-of-the-art surveys on the theory of elliptic, parabolic, and hyperbolic problems, and their related applications. Furnishes incisive contribution by over 40 mathematicians representing renowned institutions in North and South America, Europe, and the Middle East."
The theory of analyzable functions is a technique used to study a wide class of asymptotic expansion methods and their applications in analysis, difference and differential equations, partial differential equations and other areas of mathematics. Key ideas in the theory of analyzable functions were laid out by Euler, Cauchy, Stokes, Hardy, E. Borel, and others. Then in the early 1980s, this theory took a great leap forward with the work of J. Ecalle. Similar techniques and conceptsin analysis, logic, applied mathematics and surreal number theory emerged at essentially the same time and developed rapidly through the 1990s. The links among various approaches soon became apparent and this body of ideas is now recognized as a field of its own with numerous applications. Thisvolume stemmed from the International Workshop on Analyzable Functions and Applications held in Edinburgh (Scotland). The contributed articles, written by many leading experts, are suitable for graduate students and researchers interested in asymptotic methods.
This volume contains the expanded lecture notes of courses taught at the Emile Borel Centre of the Henri Poincare Institute (Paris). In the book, leading experts introduce recent research in their fields. The unifying theme is the study of heat kernels in various situations using related geometric and analytic tools. Topics include analysis of complex-coefficient elliptic operators, diffusions on fractals and on infinite-dimensional groups, heat kernel and isoperimetry on Riemannian manifolds, heat kernels and infinite dimensional analysis, diffusions and Sobolev-type spaces on metric spaces, quasi-regular mappings and $p$-Laplace operators, heat kernel and spherical inversion on $SL 2(C)$, random walks and spectral geometry on crystal lattices, isoperimetric and isocapacitary inequalities, and generating function techniques for random walks on graphs. This volume is suitable for graduate students and research mathematicians interested in random processes and analysis on manifolds.
The articles in this volume reflect a subsequent development after a scientific meeting entitled Carleman Estimates and Control Theory, held in Cartona in September 1999. The 14 research-level articles, written by experts, focus on new results on Carleman estimates and their applications to uniqueness and controlla bility of partial differential equations and systems. The main topics are unique continuation for elliptic PDEs and systems, con trol theory and inverse problems. New results on strong uniqueness for second or higher order operators are explored in detail in several papers. In the area of control theory. the reader will find applications of Carleman estimates to stabiliza tion, ob...
Contains proceedings that reflects the 2001 Ahlfors-Bers Colloquium held at the University of Connecticut (Storrs). This book is suitable for graduate students and researchers interested in complex analysis.