You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The present volume celebrates the 60th birthday of Professor Giovanni Paolo Galdi and honors his remarkable contributions to research in the ?eld of Mathematical Fluid Mechanics. The book contains a collection of 35 peer reviewed papers, with authors from 20 countries, re?ecting the worldwide impact and great inspiration by his work over the years. These papers were selected from invited lectures and contributed talks presented at the International Conference on Mathematical Fluid Mechanics held in Estoril, Portugal, May 21–25, 2007 and organized on the oc- sion of Professor Galdi’s 60th birthday. We express our gratitude to all the authors and reviewers for their important contributions...
The chapters in this volume deal with four fields with deep historical roots that remain active areas reasearch: partial differential equations, variational methods, fluid mechanics, and thermodynamics. The collection is intended to serve two purposes: First, to honor James Serrin, in whose work the four fields frequently interacted; and second, to bring together work in fields that are usually pursued independently but that remain remarkably interrelated. Serrin's contributions to mathematical analysis and its applications are fundamental and include such theorems and methods as the Gilbarg- Serrin theorem on isoated singularities, the Serrin symmetry theorem, the Alexandrov-Serrin moving-plane technique, The Peletier-Serrin uniqueness theorem, and the Serrin integal of the calculus of variations. Serrin has also been noted for the elegance of his mathematical work and for the effectiveness of his teaching and collaborations.
We study the unconstrained (free) motion of an elastic solid B in a Navier-Stokes liquid L occupying the whole space outside B, under the assumption that a constant body force b is acting on B. More specifically, we are interested in the steady motion of the coupled system {B,L}, which means that there exists a frame with respect to which the relevant governing equations possess a time-independent solution. We prove the existence of such a frame, provided some smallness restrictions are imposed on the physical parameters, and the reference configuration of B satisfies suitable geometric properties.
Undoubtedly, the Navier-Stokes equations are of basic importance within the context of modern theory of partial differential equations. Although the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and challenging nature that analysts and applied mathematicians cannot help being attracted by them and trying to contribute to their resolution. Thus, it is not a coincidence that over the past ten years more than seventy sig nificant research papers have appeared co...
Contents: A New Approach to the Helmholtz Decomposition and the Neumann Problem in Lq-Spaces for Bounded and Exterior Domains (C G Simader & H Sohr)On the Energy Equation and on the Uniqueness for D-Solutions to Steady Navier-Stokes Equations in Exterior Domains (G P Galdi)On the Asymptotic Structure of D-Solutions to Steady Navier-Stokes Equations in Exterior Domains (G P Galdi)On the Solvability of an Evolution Free Boundary Problem for the Navier-Stokes Equation in Hölder Spaces of Functions (I S Mogilevskii & V A Solonnikov) Readership: Applied mathematicians.
The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. Fundamental Trends in Fluid-Structure Interaction is a unique collection of important papers written by world-renowned experts aimed at furnishing the highest level of development in several significant areas of fluid-structure interactions. The contributions cover several aspects of this discipline, from mathematical analysis, numerical simulation and modeling viewpoints, including motion of rigid and elastic bodies in a viscous liquid, particulate flow and hemodynamic.
In this volume, leading experts on differential equations address recent advances in the fields of ordinary differential equations and dynamical systems, partial differential equations and calculus of variations, and their related applications.
This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.
This book is meant as a present to honor Professor on the th occasion of his 70 birthday. It collects refereed contributions from sixty-one mathematicians from eleven countries. They cover many different areas of research related to the work of Professor including Navier-Stokes equations, nonlinear elasticity, non-Newtonian fluids, regularity of solutions of parabolic and elliptic problems, operator theory and numerical methods. The realization of this book could not have been made possible without the generous support of Centro de Matemática Aplicada (CMA/IST) and Fundação Calouste Gulbenkian. Special thanks are due to Dr. Ulrych for the careful preparation of the final version of this b...