You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Abiotic stresses such as high temperature, low-temperature, drought, and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (most studies are Arabidopsis and rice genome) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce l...
Abiotic stresses such as high temperature, low-temperature, drought and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (Arabidopsis and rice were mostly studied) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and h...
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. ...
Regulation of Downstream Targets, Volume 134 in the Advances in Protein Chemistry and Structural Biology series, presents interesting chapters on topics such as Transcriptional regulatory mechanisms and signaling networks in Viral Infections, Identification of potential key genes associated with pathogenesis and prognosis of endometrial cancer based on Integrated Bioinformatics Approaches, Differential regulation of genes in stage IB pancreatic cancer associated with increased risk of metastasis, AMPK-related LKB1-downstream targets, A compilation of bioinformatic approaches to identify novel downstream targets for the detection and prophylaxis of cancer, Protein phosphatases and their targe...
Plants provide a source of survival for all life on this planet. They are able to capture solar energy and convert it into food, feed, wood and medicines. Though sessile in nature, over many millions of years, plants have diversified and evolved from lower to higher life forms, spreading from sea level to mountains, and adapting to different ecozones. They have learnt to cope with challenging environmental conditions and various abiotic and biotic factors. Plants have also developed systems for monitoring the changing environment and efficiently utilizing resources for growth, flowering and reproduction, as well as mechanisms to counter the impact of pests and diseases and to communicate wit...
Genome science or genomics is essential to advancing knowledge in the fields of biology and medicine. Specifically, researchers learn about the molecular biology behind genetic expression in living organisms and related methods of treating human genetic diseases (including gene therapy). Advances in Genome Science is an e-book series which provides a multi-disciplinary view of some of the latest developments in genome research, allowing readers to capture the essentiality and diversity of genomics in contemporary science.
Bei vielen physiologischen und Entwicklungsprozessen sowie bei Stressreaktionen spielen Hormonsignale, die Pflanzen aussenden, eine große Rolle. Mit Aufkommen der neuen post-genomischen Molekulartechnologien sind auch unsere Möglichkeiten, die Wirkung von Hormonsignalen auf die Genexpression und adaptive Prozesse zu verstehen, heute einzigartig. Wenn wir die molekularen Grundlagen dieser Prozesse entschlüsseln, ergeben sich für die Entwicklung neuer Pflanzenbiotechnologien und verbesserter Varianten von Kulturpflanzen große Chancen. Die Themen dieses Buches legen den Schwerpunkt auf die Genomik und funktionale Aspekte der Genomik. Damit lassen sich globale Veränderungen und Veränderun...
The production of cellular oxidants such as reactive oxygen species (ROS) is an inevitable con-sequence of redox cascades of aerobic metabolism in plants. This milieu is further aggravated by a myriad of adverse environmental conditions that plants, owing to their sessile life-style, have to cope with during their life cycle. Adverse conditions prevent plants reaching their full genetic potential in terms of growth and productivity mainly as a result of accelerated ROS generation-accrued redox imbalances and halted cellular metabolism. In order to sustain ROS-accrued consequences, plants tend to manage a fine homeostasis between the generation and antioxidants-mediated metabolisms of ROS and...
Stomata, the tiny pores on leaf surface, are the gateways for CO2 uptake during photosynthesis as well as water loss in transpiration. Further, plants use stomatal closure as a defensive response, often triggered by elicitors, to prevent the entry of pathogens. The guard cells are popular model systems to study the signalling mechanism in plant cells. The messengers that mediate closure upon perception of elicitors or microbe associated molecular patterns (MAMPs) are quite similar to those during ABA effects. These components include reactive oxygen species (ROS), nitric oxide (NO), cytosolic pH and intracellular Ca2+. The main components are ROS, NO and cytosolic free Ca2+. The list extends...