You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new edition offers a comprehensive introduction to the analysis of data using Bayes rule. It generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This is particularly useful when the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins, so that the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. New sections feature factorizing parameter...
This biography illuminates the life of Ennio De Giorgi, a mathematical genius in parallel with John Nash, the Nobel Prize Winner and protagonist of A Beautiful Mind. Beginning with his childhood and early years of research, into his solution of the 19th problem of Hilbert and his professorship, this book pushes beyond De Giorgi’s rich contributions to the mathematics community, to present his work in human rights, including involvement in the fight for Leonid Plyushch’s freedom and the defense of dissident Uruguayan mathematician José Luis Massera. Considered by many to be the greatest Italian analyst of the twentieth century, De Giorgi is described in this volume in full through documents and direct interviews with friends, family, colleagues, and former students.
This book provides a multi-level introduction to Bayesian reasoning (as opposed to OC conventional statisticsOCO) and its applications to data analysis. The basic ideas of this OC newOCO approach to the quantification of uncertainty are presented using examples from research and everyday life. Applications covered include: parametric inference; combination of results; treatment of uncertainty due to systematic errors and background; comparison of hypotheses; unfolding of experimental distributions; upper/lower bounds in frontier-type measurements. Approximate methods for routine use are derived and are shown often to coincide OCo under well-defined assumptions! OCo with OC standardOCO methods, which can therefore be seen as special cases of the more general Bayesian methods. In dealing with uncertainty in measurements, modern metrological ideas are utilized, including the ISO classification of uncertainty into type A and type B. These are shown to fit well into the Bayesian framework.
Statistical literacy is critical for the modern researcher in Physics and Astronomy. This book empowers researchers in these disciplines by providing the tools they will need to analyze their own data. Chapters in this book provide a statistical base from which to approach new problems, including numerical advice and a profusion of examples. The examples are engaging analyses of real-world problems taken from modern astronomical research. The examples are intended to be starting points for readers as they learn to approach their own data and research questions. Acknowledging that scientific progress now hinges on the availability of data and the possibility to improve previous analyses, data...
In 1978 Edwin T. Jaynes and Myron Tribus initiated a series of workshops to exchange ideas and recent developments in technical aspects and applications of Bayesian probability theory. The first workshop was held at the University of Wyoming in 1981 organized by C.R. Smith and W.T. Grandy. Due to its success, the workshop was held annually during the last 18 years. Over the years, the emphasis of the workshop shifted gradually from fundamental concepts of Bayesian probability theory to increasingly realistic and challenging applications. The 18th international workshop on Maximum Entropy and Bayesian Methods was held in Garching / Munich (Germany) (27-31. July 1998). Opening lectures by G. L...
This book provides a multi-level introduction to Bayesian reasoning (as opposed to “conventional statistics”) and its applications to data analysis. The basic ideas of this “new” approach to the quantification of uncertainty are presented using examples from research and everyday life. Applications covered include: parametric inference; combination of results; treatment of uncertainty due to systematic errors and background; comparison of hypotheses; unfolding of experimental distributions; upper/lower bounds in frontier-type measurements. Approximate methods for routine use are derived and are shown often to coincide — under well-defined assumptions! — with “standard” methods, which can therefore be seen as special cases of the more general Bayesian methods. In dealing with uncertainty in measurements, modern metrological ideas are utilized, including the ISO classification of uncertainty into type A and type B. These are shown to fit well into the Bayesian framework.
These proceedings present the most up-to-date status of deep inelastic scattering (DIS) physics. Topics such as structure function measurements and phenomenology, quantum chromodynamics (QCD) studies in DIS and photoproduction, spin physics and diffractive interactions are reviewed in detail, with emphasis on those studies that push the test of QCD and the Standard Model to the limits of their present range of validity, towards both the very high and the very low four-momentum transfers in leptonproton scattering.
Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.
The once esoteric idea of embedding scientific computing into a probabilistic framework, mostly along the lines of the Bayesian paradigm, has recently enjoyed wide popularity and found its way into numerous applications. This book provides an insider’s view of how to combine two mature fields, scientific computing and Bayesian inference, into a powerful language leveraging the capabilities of both components for computational efficiency, high resolution power and uncertainty quantification ability. The impact of Bayesian scientific computing has been particularly significant in the area of computational inverse problems where the data are often scarce or of low quality, but some characteri...