Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

p-Adic Automorphic Forms on Shimura Varieties
  • Language: en
  • Pages: 397

p-Adic Automorphic Forms on Shimura Varieties

In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now kno...

The Geometry of Algebraic Cycles
  • Language: en
  • Pages: 202

The Geometry of Algebraic Cycles

The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.

Harmonic Analysis, the Trace Formula, and Shimura Varieties
  • Language: en
  • Pages: 708

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.

Shimura Varieties
  • Language: en
  • Pages: 341

Shimura Varieties

This volume forms the sequel to "On the stabilization of the trace formula", published by International Press of Boston, Inc., 2011

Galois Representations in Arithmetic Algebraic Geometry
  • Language: en
  • Pages: 506

Galois Representations in Arithmetic Algebraic Geometry

Conference proceedings based on the 1996 LMS Durham Symposium 'Galois representations in arithmetic algebraic geometry'.

Quaternion Orders, Quadratic Forms, and Shimura Curves
  • Language: en
  • Pages: 232

Quaternion Orders, Quadratic Forms, and Shimura Curves

Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. This monograph presents Shimura curves from a theoretical and algorithmic perspective. The main topics are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplicationpoints. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In this regard, the authors develop a theory full of new possibilities that parallels Gauss'theory on the classification of binary quadratic forms with integral coefficients by the action of the modular group. This is one of the few available books explaining the theory of Shimura curves at the graduate student level. Each topic covered in the book begins with a theoretical discussion followed by carefully worked-out examples, preparing the way for further research.

The Gross-Zagier Formula on Shimura Curves
  • Language: en
  • Pages: 266

The Gross-Zagier Formula on Shimura Curves

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

Point-Counting and the Zilber–Pink Conjecture
  • Language: en
  • Pages: 268

Point-Counting and the Zilber–Pink Conjecture

Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the André–Oort and Zilber–Pink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented in detail to demonstrate the flexibility of the method, while wider developments are described in order to illustrate the breadth of the diophantine conjectures and to highlight key arithmetical ingredients. The underlying ideas are elementary and most of the book can be read with only a basic familiarity with number theory and complex algebraic geometry. It serves as an introduction for postgraduate students and researchers to the main ideas, results, problems, and themes of current research in this area.

Motives
  • Language: en
  • Pages: 694

Motives

'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, and to play the role of the missing rational cohomology. This work contains the texts of the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991.