You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ground-penetrating radar (GPR) is a rapidly developing field that has seen tremendous progress over the past 15 years. The development of GPR spans aspects of geophysical science, technology, and a wide range of scientific and engineering applications. It is the breadth of applications that has made GPR such a valuable tool in the geophysical consulting and geotechnical engineering industries, has lead to its rapid development, and inspired new areas of research in academia. The topic of GPR has gone from not even being mentioned in geophysical texts ten years ago to being the focus of hundreds of research papers and special issues of journals dedicated to the topic. The explosion of primary...
GPR Remote Sensing in Archaeology provides a complete description of the processes needed to take raw GPR data all the way to the construction of subsurface images. The book provides an introduction to the “theory” of GPR by using a simulator that shows how radar profiles across simple model structures look and provides many examples so that the complexity of radar signatures can be understood. It continues with a review of the necessary radargram signal processes needed along with examples. The most comprehensive methodology to construct subsurface images from either coarsely spaced data using interpolation or from dense data from multi-channel equipment and 3D volume generation is presented, advanced imaging solutions such as overlay analysis are introduced, and numerous worldwide site case histories are shown. The authors present their studies in a way that most technical and non-technical users of the equipment will find essentials for implementing in their own subsurface investigations.
This book describes the key elements of the subject of surface penetrating radar, and in general terms the inter-relationship between those topics in electromagnetism, soil science, geophysics and signal processing which form part of its design.
This book, based on Transport and Urban Development COST Action TU1208, presents the most advanced applications of ground penetrating radar (GPR) in a civil engineering context, with documentation of instrumentation, methods and results. It explains clearly how GPR can be employed for the surveying of critical transport infrastructure, such as roads, pavements, bridges and tunnels and for the sensing and mapping of underground utilities and voids. Detailed attention is also devoted to use of GPR in the inspection of geological structures and of construction materials and structures, including reinforced concrete, steel reinforcing bars and pre/post-tensioned stressing ducts. Advanced methods for solution of electromagnetic scattering problems and new data processing techniques are also presented. Readers will come to appreciate that GPR is a safe, advanced, non destructive and noninvasive imaging technique that can be effectively used for the inspection of composite structures and the performance of diagnostics relevant to the entire life cycle of civil engineering works.
Ground Penetrating Radar: Theory and Practice is a practical guide to using this powerful underground surveying technique. The author uses her wide experience to explain the critical factors in using GPR and how parameters, such as wavelength, attenuation and loss need to be properly considered to obtain good survey results. The first chapter introduces the underlying physics and explains the formation of signal patterning. The next two chapters explain the significance of wavelengths for target detection, probing depths and resolution, and demonstrating the variety of signal presentation. Chapter four discusses why survey results are affected by water and air in the soil, and how this may a...
GPR Basics: A Handbook for Ground Penetrating Radar Users was written to help you gain an understanding of the fundamentals of ground penetrating radar and develop the confidence to appropriately utilize this technology. This book is organized in an approachable format that minimizes technical jargon and math. LearnGPR is known for its ease of training without compromising the quality and this book is no different. After reading this book you will understand how GPR works, recognize the limitations of the technology, increase survey success rates, expand the types of projects you can conduct, and feel confident speaking with both clients and industry professionals. The topics covered in this book include: -Electromagnetic Waves -GPR Antenna -Physical Properties of Materials -GPR Wave Behavior -Modeling GPR Signals -Data Interpretation -Data Visualization -Applications of GPR -Documenting and Reporting -Benefits and Limitations
The Special Issue (SI) “Recent Advances in GPR Imaging” offers an up-to-date overview of state-of-the-art research activities dealing with the development of Ground Penetrating Radar (GPR) technology and its recent advances in imaging in the different fields of application. In fact, the advances experimented with over the last few decades with regard to the appearance of new GPR systems and the need to manage large amounts of data suggest an increasing interest in the development of new signal processing algorithms and modeling, as well as in the use of three-dimensional (3D) imaging techniques.
A real-world guide to practical applications of ground penetrating radar (GPR) The nondestructive nature of ground penetrating radar makes it an important and popular method of subsurface imaging, but it is a highly specialized field, requiring a deep understanding of the underlying science for successful application. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing provides experienced professionals with the background they need to ensure precise data collection and analysis. Written to build upon the information presented in more general introductory volumes, the book discusses the fundamental mathematical, physical, and engineering principles upon which GPR...
Included in this book are practical guidelines for data collection and interpretation, from antennae configurations to sequence stratigraphy, together with new advances such as vertical radar profiles and 3-D GPR imaging for hydrocarbon reservoir modelling, designed to assist new and veteran users get the most from GPR. Case studies in this book detail GPR investigations in a wide array of sedimentary environments including alluvial fans, braided rivers, spits, beaches, sand dunes, lakes, bogs, and floodplains.
Using 20 years of data from more than 600 ground-penetrating radar surveys, Lawrence Conyers provides the consumer of GPR studies with basic information on how to read and interpret GPR data for identifying subsurface remains and do cultural analysis.